Impacts of climate change on streamflow and reservoir inflows in the Upper Manyame sub-catchment of Zimbabwe

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Oliver Masimba, W. Gumindoga, A. Mhizha, D. Rwasoka
{"title":"Impacts of climate change on streamflow and reservoir inflows in the Upper Manyame sub-catchment of Zimbabwe","authors":"Oliver Masimba, W. Gumindoga, A. Mhizha, D. Rwasoka","doi":"10.17159/wsa/2022.v48.i4.3920","DOIUrl":null,"url":null,"abstract":"This study focused on the Upper Manyame sub-catchment which covers an area of approximately 3 786 km2 and forms part of the Manyame catchment, one of the seven catchments of Zimbabwe. Manyame catchment has its source in Marondera town and drains into the Zambezi River downstream of the Kariba Dam and upstream of the Cahora Bassa Dam, in the northern part of the country. This study assessed potential climate change impacts on the streamflow and reservoir inflows in the Upper Manyame sub-catchment. Hydrologic simulations for future climate (2030s and 2060s) were carried out using statistically downscaled bias-corrected variables from the HadCM3 (HadCM3A2a and HadCM3B2a scenarios) and CanESM2 (RCP2.6 and RCP8.5) global circulation models. The HEC–HMS hydrological model was set up for two gauged micro-catchments and eight ungauged tributary micro-catchments. Model calibration for gauged micro-catchments of Upper Manyame over the period from 2000–2010 revealed satisfactory model performance of 4.3% (RVE) and 0.1 (bias) for Mukuvisi micro-catchment and 9.5% (RVE) and 0.15 (bias) for Marimba micro-catchment. Model simulations resulted in a projected decrease in streamflow by 7.4–26.4% for HadCM3. For CanESM2, simulations resulted in a projected decrease in streamflow by 2.5–34.7%. Reservoir inflows into Lake Chivero and Lake Manyame, the main water supply sources for Harare, will decrease by 10.5–18% for HadCM3 and by 8–33.6% for CanESM2. \n ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i4.3920","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This study focused on the Upper Manyame sub-catchment which covers an area of approximately 3 786 km2 and forms part of the Manyame catchment, one of the seven catchments of Zimbabwe. Manyame catchment has its source in Marondera town and drains into the Zambezi River downstream of the Kariba Dam and upstream of the Cahora Bassa Dam, in the northern part of the country. This study assessed potential climate change impacts on the streamflow and reservoir inflows in the Upper Manyame sub-catchment. Hydrologic simulations for future climate (2030s and 2060s) were carried out using statistically downscaled bias-corrected variables from the HadCM3 (HadCM3A2a and HadCM3B2a scenarios) and CanESM2 (RCP2.6 and RCP8.5) global circulation models. The HEC–HMS hydrological model was set up for two gauged micro-catchments and eight ungauged tributary micro-catchments. Model calibration for gauged micro-catchments of Upper Manyame over the period from 2000–2010 revealed satisfactory model performance of 4.3% (RVE) and 0.1 (bias) for Mukuvisi micro-catchment and 9.5% (RVE) and 0.15 (bias) for Marimba micro-catchment. Model simulations resulted in a projected decrease in streamflow by 7.4–26.4% for HadCM3. For CanESM2, simulations resulted in a projected decrease in streamflow by 2.5–34.7%. Reservoir inflows into Lake Chivero and Lake Manyame, the main water supply sources for Harare, will decrease by 10.5–18% for HadCM3 and by 8–33.6% for CanESM2.  
气候变化对津巴布韦上Manyame子集水区河流和水库流入的影响
这项研究的重点是上Manyame子集水区,该集水区面积约为3 786平方公里,是津巴布韦七个集水区之一的Manyame集水区的一部分。Manyame集水区起源于Marondera镇,并在该国北部的Kariba大坝下游和Cahora Bassa大坝上游汇入赞比西河。本研究评估了气候变化对上Manyame子集水区流量和水库流入的潜在影响。利用HadCM3 (HadCM3A2a和HadCM3B2a情景)和CanESM2 (RCP2.6和RCP8.5)全球环流模式的统计减尺度偏校正变量对未来气候(2030年代和2060年代)进行了水文模拟。建立了两个计量微流域和八个未计量支流微流域的HEC-HMS水文模型。2000-2010年期间,对上马尼姆河微流域的模型校正表明,Mukuvisi微流域的模型性能为4.3% (RVE)和0.1(偏差),Marimba微流域的模型性能为9.5% (RVE)和0.15(偏差)。模式模拟结果显示,HadCM3的流量预估减少7.4-26.4%。对于CanESM2,模拟结果显示流量预计减少2.5-34.7%。Harare的主要水源Chivero湖和Manyame湖的入库水量在HadCM3中将减少10.5-18%,CanESM2将减少8-33.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信