Neuromorphic Technology Based on Charge Storage Memory Devices

Sungtae Lee, Suhwan Lim, Nagyong Choi, J. Bae, Chul-Heung Kim, Soochang Lee, Dong Hwan Lee, Tackhwi Lee, Sungyong Chung, Byung-Gook Park, Jong-Ho Lee
{"title":"Neuromorphic Technology Based on Charge Storage Memory Devices","authors":"Sungtae Lee, Suhwan Lim, Nagyong Choi, J. Bae, Chul-Heung Kim, Soochang Lee, Dong Hwan Lee, Tackhwi Lee, Sungyong Chung, Byung-Gook Park, Jong-Ho Lee","doi":"10.1109/VLSIT.2018.8510667","DOIUrl":null,"url":null,"abstract":"Four synaptic devices are introduced for spiking neural networks (SNNs) and deep neural networks (DNNs). Unsupervised learning is successfully demonstrated by applying the STDP learning rule reflecting the LTP/LTD characteristics of the fabricated TFT-type NOR flash memory cells. Gated Schottky diode (GSD) and vertical NAND flash cell are proposed as synaptic device for DNNs. Using matched simulation, we obtained higher learning accuracy with GSD and NAND synaptic devices compared to that with a memristor-based synapse. Measured synaptic properties of the vertical NAND cells are reported for the first time.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"7 1","pages":"169-170"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Four synaptic devices are introduced for spiking neural networks (SNNs) and deep neural networks (DNNs). Unsupervised learning is successfully demonstrated by applying the STDP learning rule reflecting the LTP/LTD characteristics of the fabricated TFT-type NOR flash memory cells. Gated Schottky diode (GSD) and vertical NAND flash cell are proposed as synaptic device for DNNs. Using matched simulation, we obtained higher learning accuracy with GSD and NAND synaptic devices compared to that with a memristor-based synapse. Measured synaptic properties of the vertical NAND cells are reported for the first time.
基于电荷存储记忆器件的神经形态技术
介绍了用于峰值神经网络(snn)和深度神经网络(dnn)的四种突触装置。应用反映tft型NOR闪存单元LTP/LTD特性的STDP学习规则,成功地证明了无监督学习。提出了门控肖特基二极管(GSD)和垂直NAND闪存单元作为深层神经网络的突触器件。通过匹配仿真,我们获得了GSD和NAND突触器件比基于记忆电阻器的突触更高的学习精度。本文首次报道了垂直NAND细胞的突触特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信