A Light Recommendation Algorithm of We-Media Articles Based on Content

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xin Zheng, Jun Li, Qi Wu
{"title":"A Light Recommendation Algorithm of We-Media Articles Based on Content","authors":"Xin Zheng, Jun Li, Qi Wu","doi":"10.4018/IJDCF.2020100106","DOIUrl":null,"url":null,"abstract":"Since the explosive growth of we-medias today, personalized recommendation is playing an increasingly important role to help users to find their target articles in vast amounts of data. Deep learning, on the other hand, has shown good results in image processing, computer vision, natural language processing, and other fields. But it's a relative blank in the application of we-media articles recommendation. Combining the new features of we-media articles, this paper puts forward a recommendation algorithm of we-media articles based on topic model, Latent Dirichlet Allocation (LDA), and deep learning algorithm, Recurrent Neural Networks (RNNs). Experiments on the real datasets show that the combined method outperforms the traditional collaborative filtering recommendation and non-personalized recommendation method.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"326 1","pages":"68-81"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.2020100106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Since the explosive growth of we-medias today, personalized recommendation is playing an increasingly important role to help users to find their target articles in vast amounts of data. Deep learning, on the other hand, has shown good results in image processing, computer vision, natural language processing, and other fields. But it's a relative blank in the application of we-media articles recommendation. Combining the new features of we-media articles, this paper puts forward a recommendation algorithm of we-media articles based on topic model, Latent Dirichlet Allocation (LDA), and deep learning algorithm, Recurrent Neural Networks (RNNs). Experiments on the real datasets show that the combined method outperforms the traditional collaborative filtering recommendation and non-personalized recommendation method.
基于内容的自媒体文章轻推荐算法
在自媒体爆炸式增长的今天,个性化推荐在帮助用户在海量数据中找到自己的目标文章方面发挥着越来越重要的作用。另一方面,深度学习在图像处理、计算机视觉、自然语言处理等领域显示出良好的效果。但在自媒体文章推荐的应用方面,还是一个相对空白的领域。结合自媒体文章的新特点,提出了一种基于话题模型、潜狄利克雷分配(Latent Dirichlet Allocation, LDA)和深度学习算法递归神经网络(Recurrent Neural Networks, RNNs)的自媒体文章推荐算法。在真实数据集上的实验表明,该方法优于传统的协同过滤推荐和非个性化推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信