Lintang Rizkyta Ananda, Y. Rahmawati, Fauzan Khairi
{"title":"Critical thinking skills of Chemistry students by integrating design thinking with STEAM-PjBL","authors":"Lintang Rizkyta Ananda, Y. Rahmawati, Fauzan Khairi","doi":"10.3926/jotse.1938","DOIUrl":null,"url":null,"abstract":"This project seeks to foster students' critical thinking abilities through the incorporation of Design Thinking with STEAM-PjBL in a chemistry redox process. 41 grade 10 students from a high school in Rangkasbitung, Banten, Indonesia participated in this study. Learning was facilitated by using a variety of online platforms, including Edmodo, Google Jamboard, and Zoom Meetings. Interviews, observations, journal reflection procedures, and researcher notes were used to gather qualitative data. The five steps of Design Thinking: empathize, define, ideate, prototype, and test, were used to facilitate learning (Plattner, 2010). Critical thinking skills were assessed through the indicators of Framing The Problem, Solution Finding, Self-Regulation, and Reflection, developed by Ucson & Rizona (2018). Based on the categories of Information Search, Creative Interpretation and Reasoning, Reflection, and Self-Regulation, the results demonstrate the development of students' critical thinking abilities to the advanced level. Design Thinking provides a way to more easily and actively create project-based solutions in solving contextual problems related to redox reaction of water pollution in the Ciujung River due to the use of detergent waste. Understanding the relationship of chemical concepts to daily life challenges the application of this approach. To challenge students' learning and help them acquire 21st-century abilities, STEAM-PjBL may be integrated with Design Thinking.","PeriodicalId":37919,"journal":{"name":"Journal of Technology and Science Education","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology and Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jotse.1938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
This project seeks to foster students' critical thinking abilities through the incorporation of Design Thinking with STEAM-PjBL in a chemistry redox process. 41 grade 10 students from a high school in Rangkasbitung, Banten, Indonesia participated in this study. Learning was facilitated by using a variety of online platforms, including Edmodo, Google Jamboard, and Zoom Meetings. Interviews, observations, journal reflection procedures, and researcher notes were used to gather qualitative data. The five steps of Design Thinking: empathize, define, ideate, prototype, and test, were used to facilitate learning (Plattner, 2010). Critical thinking skills were assessed through the indicators of Framing The Problem, Solution Finding, Self-Regulation, and Reflection, developed by Ucson & Rizona (2018). Based on the categories of Information Search, Creative Interpretation and Reasoning, Reflection, and Self-Regulation, the results demonstrate the development of students' critical thinking abilities to the advanced level. Design Thinking provides a way to more easily and actively create project-based solutions in solving contextual problems related to redox reaction of water pollution in the Ciujung River due to the use of detergent waste. Understanding the relationship of chemical concepts to daily life challenges the application of this approach. To challenge students' learning and help them acquire 21st-century abilities, STEAM-PjBL may be integrated with Design Thinking.
期刊介绍:
JOTSE is an international Journal aiming at publishing interdisciplinary research within the university education framework and it is especially focused on the fields of Technology and Science. JOTSE serves as an international forum of reference for Engineering education. Teaching innovation oriented, the journal will be issued twice per year (every 6 months) and will include original works, research and projects dealing with the new learning methodologies and new learning supporting tools related to the wide range of disciplines the Engineering studies and profession involve. In addition, JOTSE will also issue special numbers on more technological themes from the different areas of general interest in the industrial world, which may be used as practical cases in classroom tuition and practice. Thereby, getting the working world reality closer to the learning at University. Among other areas of interest, our Journal will be focused on: 1. Education 2.General Science (Physics, Chemistry, Maths,…) 3.Telecommunications 4.Electricity and Electronics 5.Industrial Computing (Digital, Analogic, Robotics, Ergonomics) 6.Aerospatial (aircraft design and building, engines, materials) 7. Automotive (automotive materials, automobile emissions).