Seeing Shapes and Hearing Textures: Two Neural Categories of Touch

M. Reiner, Maria Stylianou-Korsnes, G. Glover, K. Hugdahl, Marcus W. Feldman
{"title":"Seeing Shapes and Hearing Textures: Two Neural Categories of Touch","authors":"M. Reiner, Maria Stylianou-Korsnes, G. Glover, K. Hugdahl, Marcus W. Feldman","doi":"10.2174/1874082001105010008","DOIUrl":null,"url":null,"abstract":"Touching for shape recognition has been shown to activate occipital areas in addition to somatosensory areas. In this study we asked if this combination of somatosensory and other sensory processing areas also exist in other kinds of touch recognition. In particular, does touch for texture roughness matching activate other sensory processing areas apart from somatosensory areas? We addressed this question with functional magnetic resonance imaging (fMRI) using wooden abstract stimulus objects whose shape or texture were to be identified. The participants judged if pairs of objects had the same shape or the same texture. We found that the activated brain areas for texture and shape matching have similar underlying structures, a combination of the primary motor area and somatosensory areas. Areas associated with object-shape processing were activated between stimuli during shape matching and not texture roughness matching, while auditory areas were activated during encoding of texture and not for shape stimuli. Matching of textures also in- volves left BA47, an area associated with retrieval of relational information. We suggest that texture roughness is recog- nized in a framework of ordering. Left-lateralized activations favoring texture might reflect semantic processing associ- ated with grading roughness quantitatively, as opposed to the more qualitative distinctions between shapes.","PeriodicalId":88753,"journal":{"name":"The open neuroscience journal","volume":"7 1","pages":"8-15"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open neuroscience journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874082001105010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Touching for shape recognition has been shown to activate occipital areas in addition to somatosensory areas. In this study we asked if this combination of somatosensory and other sensory processing areas also exist in other kinds of touch recognition. In particular, does touch for texture roughness matching activate other sensory processing areas apart from somatosensory areas? We addressed this question with functional magnetic resonance imaging (fMRI) using wooden abstract stimulus objects whose shape or texture were to be identified. The participants judged if pairs of objects had the same shape or the same texture. We found that the activated brain areas for texture and shape matching have similar underlying structures, a combination of the primary motor area and somatosensory areas. Areas associated with object-shape processing were activated between stimuli during shape matching and not texture roughness matching, while auditory areas were activated during encoding of texture and not for shape stimuli. Matching of textures also in- volves left BA47, an area associated with retrieval of relational information. We suggest that texture roughness is recog- nized in a framework of ordering. Left-lateralized activations favoring texture might reflect semantic processing associ- ated with grading roughness quantitatively, as opposed to the more qualitative distinctions between shapes.
看形状和听纹理:触觉的两种神经分类
为了识别形状而触摸已被证明除了激活体感区域外,还会激活枕部区域。在这项研究中,我们询问这种体感和其他感觉处理区域的结合是否也存在于其他类型的触摸识别中。特别是,对于纹理粗糙度匹配的触摸是否激活了除了体感区域之外的其他感觉处理区域?我们用功能性磁共振成像(fMRI)解决了这个问题,使用木制的抽象刺激对象,其形状或纹理被识别。参与者判断成对的物体是否具有相同的形状或相同的纹理。我们发现,用于纹理和形状匹配的激活脑区具有相似的底层结构,是初级运动区和体感区的结合。与物体形状处理相关的区域在形状匹配和纹理粗糙度匹配的刺激之间被激活,而听觉区域在纹理编码和形状刺激之间被激活。纹理的匹配也涉及到左BA47,这是一个与关系信息检索相关的区域。我们建议在一个有序的框架中识别纹理粗糙度。倾向于纹理的左侧激活可能反映了与定量分级粗糙度相关的语义处理,而不是形状之间更定性的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信