{"title":"SPECTROPHOTOMETRIC RESEARCH INTO MULTI-LIGAND COMPLEXES FORMED BY ZIRCONIUM (IV) WITH STILBAZOLE AND CETYLPYRIDINIUM CHLORIDE","authors":"I. Ahmadov, A. Pashajanov","doi":"10.32737/2221-8688-2021-4-241-249","DOIUrl":null,"url":null,"abstract":"This study deals spectrophotometric analysis of the multi-ligand complex of zirconium (IV) with stilbazole and cetylpyridinium chloride. Dichloroethane was selected as the extragent and acetonitrile as the dispersant solution. Optimal conditions for the complex formation were identified. The results of the extraction process and complex formation were calculated statistically withPlackett Burman design and central composite design (via the Minitab 19 program). The values obtained showed that experimental results can be expressed as statistical results. Most important factors influencing absorption during complex formation were pH and ligand content. To obtain the maximum absorption, pH should be 4.5 and the ligand content should be 300 µL. The stoichiometric composition of the components in the complex was determined by various methods. The interval of subordination to Baer's law was 2-7.6 μg mL-1 , the molar light absorption coefficient was 2.6 × 104 L Mol-1 cm -1 , λmax = 590nm. A highly selective methodology was developed to determine the zirconium (IV) micronutrients in water samples.","PeriodicalId":10015,"journal":{"name":"Chemical Problems","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32737/2221-8688-2021-4-241-249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study deals spectrophotometric analysis of the multi-ligand complex of zirconium (IV) with stilbazole and cetylpyridinium chloride. Dichloroethane was selected as the extragent and acetonitrile as the dispersant solution. Optimal conditions for the complex formation were identified. The results of the extraction process and complex formation were calculated statistically withPlackett Burman design and central composite design (via the Minitab 19 program). The values obtained showed that experimental results can be expressed as statistical results. Most important factors influencing absorption during complex formation were pH and ligand content. To obtain the maximum absorption, pH should be 4.5 and the ligand content should be 300 µL. The stoichiometric composition of the components in the complex was determined by various methods. The interval of subordination to Baer's law was 2-7.6 μg mL-1 , the molar light absorption coefficient was 2.6 × 104 L Mol-1 cm -1 , λmax = 590nm. A highly selective methodology was developed to determine the zirconium (IV) micronutrients in water samples.