Semi-Local Convergence of a Seventh Order Method with One Parameter for Solving Non-Linear Equations

Christopher I. Argyros, I. Argyros, Samundra Regmi, Jinny Ann John, Jayakumar Jayaraman
{"title":"Semi-Local Convergence of a Seventh Order Method with One Parameter for Solving Non-Linear Equations","authors":"Christopher I. Argyros, I. Argyros, Samundra Regmi, Jinny Ann John, Jayakumar Jayaraman","doi":"10.3390/foundations2040056","DOIUrl":null,"url":null,"abstract":"The semi-local convergence is presented for a one parameter seventh order method to obtain solutions of Banach space valued nonlinear models. Existing works utilized hypotheses up to the eighth derivative to prove the local convergence. But these high order derivatives are not on the method and they may not exist. Hence, the earlier results can only apply to solve equations containing operators that are at least eight times differentiable although this method may converge. That is why, we only apply the first derivative in our convergence result. Therefore, the results on calculable error estimates, convergence radius and uniqueness region for the solution are derived in contrast to the earlier proposals dealing with the less challenging local convergence case. Hence, we enlarge the applicability of these methods. The methodology used does not depend on the method and it is very general. Therefore, it can be used to extend other methods in an analogous way. Finally, some numerical tests are performed at the end of the text, where the convergence conditions are fulfilled.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2040056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The semi-local convergence is presented for a one parameter seventh order method to obtain solutions of Banach space valued nonlinear models. Existing works utilized hypotheses up to the eighth derivative to prove the local convergence. But these high order derivatives are not on the method and they may not exist. Hence, the earlier results can only apply to solve equations containing operators that are at least eight times differentiable although this method may converge. That is why, we only apply the first derivative in our convergence result. Therefore, the results on calculable error estimates, convergence radius and uniqueness region for the solution are derived in contrast to the earlier proposals dealing with the less challenging local convergence case. Hence, we enlarge the applicability of these methods. The methodology used does not depend on the method and it is very general. Therefore, it can be used to extend other methods in an analogous way. Finally, some numerical tests are performed at the end of the text, where the convergence conditions are fulfilled.
求解非线性方程的单参数七阶方法的半局部收敛性
给出了求解Banach空间值非线性模型的一参数七阶方法的半局部收敛性。现有的工作利用假设一直到八阶导数来证明局部收敛性。但是这些高阶导数不在方法中,它们可能不存在。因此,前面的结果只能适用于求解包含至少8倍可微算子的方程,尽管这种方法可能收敛。这就是为什么,我们只在收敛结果中应用一阶导数。因此,与先前处理挑战性较小的局部收敛情况的建议相比,导出了解的可计算误差估计、收敛半径和唯一性区域的结果。因此,我们扩大了这些方法的适用性。所使用的方法不取决于方法,而且是非常通用的。因此,它可以用来以类似的方式扩展其他方法。最后,在本文的最后进行了一些数值测试,并满足了收敛条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信