Improved Variational Iteration Solutions to the SIR Model of Dengue Fever Disease for the Case of South Sulawesi

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
S. Mungkasi
{"title":"Improved Variational Iteration Solutions to the SIR Model of Dengue Fever Disease for the Case of South Sulawesi","authors":"S. Mungkasi","doi":"10.5614/J.MATH.FUND.SCI.2020.52.3.4","DOIUrl":null,"url":null,"abstract":"The susceptible-infected-recovered (SIR) model of the spread of dengue fever for the case of South Sulawesi is considered. Rangkuti’s variational iteration method (RVIM) is recalled. This paper makes four contributions. The first one is to provide a successive approximation method (SAM) for solving the considered model. The second one is to show that SAM and RVIM are identical. Thirdly, a modification of RVIM is proposed. Fourthly, it is shown that the modification leads to an improvement of the accuracy of the method. Both RVIM and the improved version are quite accurate for short time periods. However, the improved version is more accurate and is able to provide more realistic explicit solutions to the model.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/J.MATH.FUND.SCI.2020.52.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

The susceptible-infected-recovered (SIR) model of the spread of dengue fever for the case of South Sulawesi is considered. Rangkuti’s variational iteration method (RVIM) is recalled. This paper makes four contributions. The first one is to provide a successive approximation method (SAM) for solving the considered model. The second one is to show that SAM and RVIM are identical. Thirdly, a modification of RVIM is proposed. Fourthly, it is shown that the modification leads to an improvement of the accuracy of the method. Both RVIM and the improved version are quite accurate for short time periods. However, the improved version is more accurate and is able to provide more realistic explicit solutions to the model.
南苏拉威西岛登革热SIR模型的改进变分迭代解
考虑了南苏拉威西岛登革热传播的易感-感染-康复(SIR)模式。回顾了rangkuti的变分迭代方法(RVIM)。本文有四个贡献。第一个是提供一种逐次逼近方法(SAM)来求解所考虑的模型。第二个是显示SAM和RVIM是相同的。第三,对RVIM进行了改进。第四,结果表明,改进后的方法提高了方法的精度。RVIM和改进版本在短时间内都相当准确。然而,改进后的版本更准确,能够为模型提供更现实的显式解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信