Obstructions for Bounded Branch-depth in Matroids

J. P. Gollin, Kevin Hendrey, Dillon Mayhew, Sang-il Oum
{"title":"Obstructions for Bounded Branch-depth in Matroids","authors":"J. P. Gollin, Kevin Hendrey, Dillon Mayhew, Sang-il Oum","doi":"10.19086/aic.24227","DOIUrl":null,"url":null,"abstract":"DeVos, Kwon, and Oum introduced the concept of branch-depth of matroids as a natural analogue of tree-depth of graphs. They conjectured that a matroid of sufficiently large branch-depth contains the uniform matroid $U_{n,2n}$ or the cycle matroid of a large fan graph as a minor. We prove that matroids with sufficiently large branch-depth either contain the cycle matroid of a large fan graph as a minor or have large branch-width. As a corollary, we prove their conjecture for matroids representable over a fixed finite field and quasi-graphic matroids, where the uniform matroid is not an option.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/aic.24227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

DeVos, Kwon, and Oum introduced the concept of branch-depth of matroids as a natural analogue of tree-depth of graphs. They conjectured that a matroid of sufficiently large branch-depth contains the uniform matroid $U_{n,2n}$ or the cycle matroid of a large fan graph as a minor. We prove that matroids with sufficiently large branch-depth either contain the cycle matroid of a large fan graph as a minor or have large branch-width. As a corollary, we prove their conjecture for matroids representable over a fixed finite field and quasi-graphic matroids, where the uniform matroid is not an option.
矩阵中有界分支深度的障碍物
DeVos, Kwon和Oum引入了拟阵的分支深度的概念,作为图的树深度的自然类比。他们推测一个分支深度足够大的矩阵包含均匀矩阵$U_{n,2n}$或一个大扇形图的循环矩阵作为次矩阵。我们证明了具有足够大分支深度的拟阵要么包含一个大扇形图的环拟阵作为次线,要么具有较大的分支宽度。作为推论,我们证明了在固定有限域上可表示的拟阵和不能选择一致阵的拟图拟阵的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信