{"title":"Comparison of Plasma Ion Deposition Processes at Industrial Scale","authors":"Satoshi Hirota, R. Cremer, Tetsuya Takahashi","doi":"10.3131/JVSJ2.60.362","DOIUrl":null,"url":null,"abstract":"A relatively new industrial sputtering technology based on High Power Impulse Magnetron Sputtering (HiPIMS) is demonstrated. HiPIMS is a magnetron discharge process like conventional dc magnetron sputtering (DCMS). However, momentarily input power is approximately ten times higher in magnitude. In this study HiPIMS discharge is characterized by Optical Emission Spectroscopy (OES), and compared with DCMS and cathodic arc (CA). The result shows that the HiPIMS provides the high ionization degree of the sputtered metal species. The degree of Ti ionization is found to be increased as the pulse frequency of HiPIMS is decreased, which enables to adjust the sputter plasma properties ranging from lowmetal ionization to highmetal ionization by controlling the pulse frequency. This expands an opportunity to tailor the properties of sputtered thin ˆlms.","PeriodicalId":17344,"journal":{"name":"Journal of The Vacuum Society of Japan","volume":"15 1","pages":"362-364"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Vacuum Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3131/JVSJ2.60.362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A relatively new industrial sputtering technology based on High Power Impulse Magnetron Sputtering (HiPIMS) is demonstrated. HiPIMS is a magnetron discharge process like conventional dc magnetron sputtering (DCMS). However, momentarily input power is approximately ten times higher in magnitude. In this study HiPIMS discharge is characterized by Optical Emission Spectroscopy (OES), and compared with DCMS and cathodic arc (CA). The result shows that the HiPIMS provides the high ionization degree of the sputtered metal species. The degree of Ti ionization is found to be increased as the pulse frequency of HiPIMS is decreased, which enables to adjust the sputter plasma properties ranging from lowmetal ionization to highmetal ionization by controlling the pulse frequency. This expands an opportunity to tailor the properties of sputtered thin ˆlms.