{"title":"Space Charge Region Beyond the Abrupt Approximation","authors":"M. Grundmann","doi":"10.1002/pssb.202300257","DOIUrl":null,"url":null,"abstract":"We revisit the problem of the potential, electrical field and charge density in a space charge region. Within the Boltzmann approximation, the asymptotic solution is found analytically. The exact solution everywhere can be found from numerically integrating an analytical function. The solution is compared to the popular abrupt (or depletion) approximation and an analytical approximation is given.This article is protected by copyright. All rights reserved.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"177 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the problem of the potential, electrical field and charge density in a space charge region. Within the Boltzmann approximation, the asymptotic solution is found analytically. The exact solution everywhere can be found from numerically integrating an analytical function. The solution is compared to the popular abrupt (or depletion) approximation and an analytical approximation is given.This article is protected by copyright. All rights reserved.