Triplet: A clustering scheduling algorithm for heterogeneous systems

B. Cirou, E. Jeannot
{"title":"Triplet: A clustering scheduling algorithm for heterogeneous systems","authors":"B. Cirou, E. Jeannot","doi":"10.1109/ICPPW.2001.951956","DOIUrl":null,"url":null,"abstract":"The goal of the OURAGAN project is to provide access of meta-computing resources to Scilab users. We present here an approach that consists, given a Scilab script, in scheduling and executing this script on a heterogeneous cluster of machines. One of the most effective scheduling technique is called clustering which consists in grouping tasks on virtual processors (clusters) and then mapping clusters onto real processors. In this paper we study and apply the clustering technique for heterogeneous systems. We present a clustering algorithm called Triplet, study its performance and compare it to the HEFT algorithm. We show that Triplet has good characteristics and outperforms HEFT in most of the cases.","PeriodicalId":93355,"journal":{"name":"Proceedings of the ... ICPP Workshops on. International Conference on Parallel Processing Workshops","volume":"160 1","pages":"231-236"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ICPP Workshops on. International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2001.951956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

The goal of the OURAGAN project is to provide access of meta-computing resources to Scilab users. We present here an approach that consists, given a Scilab script, in scheduling and executing this script on a heterogeneous cluster of machines. One of the most effective scheduling technique is called clustering which consists in grouping tasks on virtual processors (clusters) and then mapping clusters onto real processors. In this paper we study and apply the clustering technique for heterogeneous systems. We present a clustering algorithm called Triplet, study its performance and compare it to the HEFT algorithm. We show that Triplet has good characteristics and outperforms HEFT in most of the cases.
Triplet:异构系统的集群调度算法
OURAGAN项目的目标是为Scilab用户提供元计算资源的访问。在这里,我们提供了一种方法,它包括给定一个Scilab脚本,在一个异构的机器集群上调度和执行该脚本。集群是最有效的调度技术之一,它包括在虚拟处理器(集群)上对任务进行分组,然后将集群映射到真实处理器上。本文研究并应用了异构系统的聚类技术。提出了一种名为Triplet的聚类算法,研究了其性能,并与HEFT算法进行了比较。我们发现Triplet具有良好的特性,在大多数情况下优于HEFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信