H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono
{"title":"Development of MWCNT embedded micromechanical resonator working as rarefied gas sensor","authors":"H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono","doi":"10.1109/MEMSYS.2013.6474412","DOIUrl":null,"url":null,"abstract":"This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"93 1","pages":"985-988"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.