Development of MWCNT embedded micromechanical resonator working as rarefied gas sensor

H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono
{"title":"Development of MWCNT embedded micromechanical resonator working as rarefied gas sensor","authors":"H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono","doi":"10.1109/MEMSYS.2013.6474412","DOIUrl":null,"url":null,"abstract":"This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.
作为稀薄气体传感器的MWCNT嵌入式微机械谐振器的研制
本研究开发了多壁碳纳米管嵌入式微机械谐振器,作为一种新型的稀薄气体传感器。稀薄气体流体的惯性效应表现为谐振频率的变化,谐振腔与气体分子之间相互作用能量的耗散影响振荡的阻尼。因此,可以用一个装置来区分两种气体。为了提高谐振器的灵敏度,采用生物mems兼容工艺,在谐振器上放置了MWCNTs。MWCNTs嵌入谐振器已成功证明可以在0.02 Pa至0.9 Pa的压力下检测和区分氢气和氮气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信