Effective Candidate Selection and Interpretable Interest Extraction for Follower Prediction on Social Media

Seiji Maekawa, Santi Saeyor, Takeshi Sakaki, Makoto Onizuka
{"title":"Effective Candidate Selection and Interpretable Interest Extraction for Follower Prediction on Social Media","authors":"Seiji Maekawa, Santi Saeyor, Takeshi Sakaki, Makoto Onizuka","doi":"10.1145/3486622.3493954","DOIUrl":null,"url":null,"abstract":"We address the problem of predicting new followers for a company account given that the number of social network API calls is limited, in order to enhance the marketing communication effectiveness on social media. The contributions of this paper are three-fold: 1) filtering methods that select promising candidate accounts with high precision while effectively reducing the number of API calls, 2) a new method for extracting interpretable feature vectors (interest vectors) from each account by utilizing standardized categories for marketing communication, and 3) a follower prediction model by utilizing the above candidate selection methods and interpretable interest vectors. Experiments on Twitter data confirm that our follower prediction model performs well with a small number of API calls and clarify which dimension of interest vectors (interest category) contributes to prediction performance.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of predicting new followers for a company account given that the number of social network API calls is limited, in order to enhance the marketing communication effectiveness on social media. The contributions of this paper are three-fold: 1) filtering methods that select promising candidate accounts with high precision while effectively reducing the number of API calls, 2) a new method for extracting interpretable feature vectors (interest vectors) from each account by utilizing standardized categories for marketing communication, and 3) a follower prediction model by utilizing the above candidate selection methods and interpretable interest vectors. Experiments on Twitter data confirm that our follower prediction model performs well with a small number of API calls and clarify which dimension of interest vectors (interest category) contributes to prediction performance.
社交媒体关注者预测的有效候选选择和可解释兴趣提取
考虑到社交网络API调用的数量有限,我们解决了预测公司账户新关注者的问题,以提高社交媒体上的营销传播效果。本文的贡献有三个方面:1)高精度选择有希望的候选帐户的过滤方法,同时有效减少API调用次数;2)利用标准化分类从每个帐户中提取可解释特征向量(兴趣向量)的新方法,用于营销传播;3)利用上述候选选择方法和可解释的兴趣向量建立了追随者预测模型。在Twitter数据上的实验证实,我们的关注者预测模型在少量API调用下表现良好,并阐明了兴趣向量(兴趣类别)的哪个维度有助于预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信