Exploiting a Human-Aware World Model for Dynamic Task Allocation in Flexible Human-Robot Teams

Dominik Riedelbauch, D. Henrich
{"title":"Exploiting a Human-Aware World Model for Dynamic Task Allocation in Flexible Human-Robot Teams","authors":"Dominik Riedelbauch, D. Henrich","doi":"10.1109/ICRA.2019.8794288","DOIUrl":null,"url":null,"abstract":"We propose a highly flexible approach to human-robot cooperation, where a robot dynamically selects operations contributing to a shared goal from a given task model. Therefore, knowledge on the task progress is extracted from a world model constructed from eye-in-hand camera images. Data generated from such partial workspace observations is not reliable over time, as humans may interact with resources. We therefore use a human-aware world model maintaining a measure for trust in stored objects regarding recent human presence and previous task progress. Our contribution is an action selection algorithm that uses this trust measure to interleave task operations with active vision to refresh the world model. Large-scale experiments cover various sorts of human participation in different benchmark tasks through simulation of simplified, partially randomized human models. Results illuminate system behaviour and performance for different parametrizations of our human-robot teaming framework.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"165 1","pages":"6511-6517"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose a highly flexible approach to human-robot cooperation, where a robot dynamically selects operations contributing to a shared goal from a given task model. Therefore, knowledge on the task progress is extracted from a world model constructed from eye-in-hand camera images. Data generated from such partial workspace observations is not reliable over time, as humans may interact with resources. We therefore use a human-aware world model maintaining a measure for trust in stored objects regarding recent human presence and previous task progress. Our contribution is an action selection algorithm that uses this trust measure to interleave task operations with active vision to refresh the world model. Large-scale experiments cover various sorts of human participation in different benchmark tasks through simulation of simplified, partially randomized human models. Results illuminate system behaviour and performance for different parametrizations of our human-robot teaming framework.
基于人感知世界模型的柔性人机团队动态任务分配
我们提出了一种高度灵活的人机合作方法,其中机器人从给定的任务模型中动态选择有助于实现共同目标的操作。因此,任务进度的知识是从眼手相机图像构建的世界模型中提取出来的。由于人类可能与资源相互作用,从这种局部工作空间观测产生的数据随着时间的推移是不可靠的。因此,我们使用人类感知的世界模型来维护存储对象中关于最近人类存在和先前任务进度的信任度量。我们的贡献是一种动作选择算法,该算法使用这种信任度量将任务操作与主动视觉交织在一起以刷新世界模型。通过模拟简化的、部分随机化的人类模型,大规模实验涵盖了不同类型的人类参与不同的基准任务。结果阐明了我们的人-机器人团队框架的不同参数化的系统行为和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信