{"title":"Sphalerite‐galena replacement in sodium chloride solution: A thermodynamic approach","authors":"K. Komuro","doi":"10.1111/rge.12265","DOIUrl":null,"url":null,"abstract":"Considering the material balances of the constituents including solid phases, replacement reaction of the sphalerite‐galena pair in chloride solution is examined quantitatively under equilibrium conditions of 250°C, water saturation vapor pressure, and initial Cl concentration of 1 mol/L. NaCl+PbCl2 solution with solid sphalerite, dissolves and releases both total Zn and total S of 1.26 × 10−5 mol/L into the solution under without or lower PbCl2 concentration. If the PbCl2 concentration is higher than 1.32 × 10−6 mol/L, precipitation of galena as replacement occurs, suggesting that sphalerite has an ability to trap a lower concentration of Pb. If PbCl2 concentration of the solution is higher than 1.32 × 10−6 mol/L, the majority of Pb deposited as galena with using sulfur originated from solid sphalerite dissolved, and the amount of Zn from sphalerite equivalent to the amount of galena deposited releases into the solution. On the other hand, NaCl+ZnCl2 solution with solid galena under the same environmental conditions, dissolves and releases both total Pb and total S of 6.43 × 10−6 mol/L into the solution under without or lower ZnCl2 concentration. Over the ZnCl2 concentration of 6.40 × 10−5 mol/L in the solution, precipitation of sphalerite occurs, indicating that galena cannot trap a low concentration of Zn. Zinc would drain away from the hydrothermal depositional environment under the presence of only galena. These relationships are controlled mainly by the reaction of predominant metal chloride or metal hydroxide species in the solution. Sphalerite is a good scavenger for Pb, but galena is not for Zn.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"26 1","pages":"250 - 254"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12265","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the material balances of the constituents including solid phases, replacement reaction of the sphalerite‐galena pair in chloride solution is examined quantitatively under equilibrium conditions of 250°C, water saturation vapor pressure, and initial Cl concentration of 1 mol/L. NaCl+PbCl2 solution with solid sphalerite, dissolves and releases both total Zn and total S of 1.26 × 10−5 mol/L into the solution under without or lower PbCl2 concentration. If the PbCl2 concentration is higher than 1.32 × 10−6 mol/L, precipitation of galena as replacement occurs, suggesting that sphalerite has an ability to trap a lower concentration of Pb. If PbCl2 concentration of the solution is higher than 1.32 × 10−6 mol/L, the majority of Pb deposited as galena with using sulfur originated from solid sphalerite dissolved, and the amount of Zn from sphalerite equivalent to the amount of galena deposited releases into the solution. On the other hand, NaCl+ZnCl2 solution with solid galena under the same environmental conditions, dissolves and releases both total Pb and total S of 6.43 × 10−6 mol/L into the solution under without or lower ZnCl2 concentration. Over the ZnCl2 concentration of 6.40 × 10−5 mol/L in the solution, precipitation of sphalerite occurs, indicating that galena cannot trap a low concentration of Zn. Zinc would drain away from the hydrothermal depositional environment under the presence of only galena. These relationships are controlled mainly by the reaction of predominant metal chloride or metal hydroxide species in the solution. Sphalerite is a good scavenger for Pb, but galena is not for Zn.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.