Shuai Peng, Jiawen Xu, Dongya Li, Jun Ren, Meng Zhang, Xiaolong Wang, Y. Liu
{"title":"Ultra-fast 3D printing of assembly—free complex optics with sub-nanometer surface quality at mesoscale","authors":"Shuai Peng, Jiawen Xu, Dongya Li, Jun Ren, Meng Zhang, Xiaolong Wang, Y. Liu","doi":"10.1088/2631-7990/acdb0d","DOIUrl":null,"url":null,"abstract":"Complex-shaped optical lenses are of great interest in the areas of laser processing, machine vision, and optical communications. Traditionally, the processing of complex optical lenses is usually achieved by precision machining combined with post-grinding or polishing, which is expensive, labor-intensive and difficult in the processing of ultra-complex optical lenses. Additive manufacturing is an emerging technology that provides significant advantages in producing highly intricate optical devices. However, the layer-by-layer method employed in such manufacturing processes has resulted in low printing speeds, as well as limitations in surface quality. To address these challenges, we apply tomographic volumetric printing (TVP) in this work, which can realize the integrated printing of complex structural models without layering. By coordinating the TVP and the meniscus equilibrium post-curing methods, ultra-fast fabrication of complex-shaped lenses with sub-nanometric roughness has been achieved. A 2.5 mm high, outer diameter 9 mm spherical lens with a roughness value of RMS = 0.3340 nm is printed at a speed of 3.1 × 104 mm3 h−1. As a further demonstration, a complex-shaped fly-eye lens is fabricated without any part assembly. The designed spherical lens is mounted on a smartphone’s camera, and the precise alignments above the circuit board are captured. Upon further optimization, this new technology demonstrates the potential for rapid fabrication of ultra-smooth complex optical devices or systems.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"105 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acdb0d","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Complex-shaped optical lenses are of great interest in the areas of laser processing, machine vision, and optical communications. Traditionally, the processing of complex optical lenses is usually achieved by precision machining combined with post-grinding or polishing, which is expensive, labor-intensive and difficult in the processing of ultra-complex optical lenses. Additive manufacturing is an emerging technology that provides significant advantages in producing highly intricate optical devices. However, the layer-by-layer method employed in such manufacturing processes has resulted in low printing speeds, as well as limitations in surface quality. To address these challenges, we apply tomographic volumetric printing (TVP) in this work, which can realize the integrated printing of complex structural models without layering. By coordinating the TVP and the meniscus equilibrium post-curing methods, ultra-fast fabrication of complex-shaped lenses with sub-nanometric roughness has been achieved. A 2.5 mm high, outer diameter 9 mm spherical lens with a roughness value of RMS = 0.3340 nm is printed at a speed of 3.1 × 104 mm3 h−1. As a further demonstration, a complex-shaped fly-eye lens is fabricated without any part assembly. The designed spherical lens is mounted on a smartphone’s camera, and the precise alignments above the circuit board are captured. Upon further optimization, this new technology demonstrates the potential for rapid fabrication of ultra-smooth complex optical devices or systems.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.