Measurement of Brain Strains in a Goat Head Under Impact Loading

Abhilash Singh, Y. Naing, S. Ganpule
{"title":"Measurement of Brain Strains in a Goat Head Under Impact Loading","authors":"Abhilash Singh, Y. Naing, S. Ganpule","doi":"10.1115/1.4062467","DOIUrl":null,"url":null,"abstract":"\n Measurements of brain deformations under dynamic loading are required to understand the biomechanics of Traumatic Brain Injury (TBI). In this work, we have experimentally measured 2D brain deformations in a sacrificed goat brain under injurious impact loading. To facilitate imaging, the goat head was dissected along the longitudinal midline. Goat head response was studied for sagittal plane rotation. Full-field, 2D deformations in the midsagittal plane of a goat brain were obtained at spatiotemporal resolutions of ~1 mm and 0.4 ms, respectively. Results elucidate the dynamic strain evolution. The goat brain underwent large deformation. The strain pattern was heterogeneous. Peak strains in various brain regions were established within ~20 ms, followed by negligible strain development due to the considerable viscous dissipation. The Cerebellum region experienced the highest strain, followed by cortical and subcortical regions. Strain concentration in the goat brain near the stiff membrane of the tentorium was observed. The strains in a brain simulant of a head surrogate (obtained previously) were also compared against the goat brain response. A response in the brain simulant was comparable to the goat brain in terms of strain pattern, peak strains in various substructures, and strain concentration near the membrane. However, the brain simulant was less dissipative than the goat brain. These results enhance the current understanding of the biomechanics of the brain under dynamic loading.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measurements of brain deformations under dynamic loading are required to understand the biomechanics of Traumatic Brain Injury (TBI). In this work, we have experimentally measured 2D brain deformations in a sacrificed goat brain under injurious impact loading. To facilitate imaging, the goat head was dissected along the longitudinal midline. Goat head response was studied for sagittal plane rotation. Full-field, 2D deformations in the midsagittal plane of a goat brain were obtained at spatiotemporal resolutions of ~1 mm and 0.4 ms, respectively. Results elucidate the dynamic strain evolution. The goat brain underwent large deformation. The strain pattern was heterogeneous. Peak strains in various brain regions were established within ~20 ms, followed by negligible strain development due to the considerable viscous dissipation. The Cerebellum region experienced the highest strain, followed by cortical and subcortical regions. Strain concentration in the goat brain near the stiff membrane of the tentorium was observed. The strains in a brain simulant of a head surrogate (obtained previously) were also compared against the goat brain response. A response in the brain simulant was comparable to the goat brain in terms of strain pattern, peak strains in various substructures, and strain concentration near the membrane. However, the brain simulant was less dissipative than the goat brain. These results enhance the current understanding of the biomechanics of the brain under dynamic loading.
冲击载荷下山羊头部脑张力的测量
动态载荷下脑变形的测量是了解创伤性脑损伤(TBI)生物力学的必要条件。在这项工作中,我们通过实验测量了在损伤冲击载荷下牺牲的山羊大脑的二维脑变形。为了便于成像,沿纵向中线解剖山羊头。研究了山羊头部对矢状面旋转的响应。在~1 mm和0.4 ms的时空分辨率下,分别获得了山羊大脑中矢状面全场二维形变。结果阐明了动态应变演化。山羊的大脑发生了很大的变形。应变模式是异质的。各脑区的峰值应变在~ 20ms内建立,随后由于相当大的粘性耗散,应变发展可以忽略不计。小脑区承受的压力最大,其次是皮质区和皮质下区。观察了山羊脑幕硬膜附近的应变浓度。我们还将大脑模拟物(先前获得的)中的菌株与山羊的大脑反应进行了比较。在应变模式、各种亚结构的峰值应变和膜附近的应变浓度方面,脑模拟物的响应与山羊脑相当。然而,大脑模拟物的耗散比山羊大脑要小。这些结果增强了目前对动态负荷下大脑生物力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信