Christopher T. Chen, P. Torzilli, K. Fishbein, R. Spencer, W. Horton
{"title":"Biomechanical Properties of Grown Cartilage Are Decreased in the Presence of Retinoic Acid, Chondroitinase ABC and Ibuprofen","authors":"Christopher T. Chen, P. Torzilli, K. Fishbein, R. Spencer, W. Horton","doi":"10.1115/imece2001/bed-23148","DOIUrl":null,"url":null,"abstract":"\n The objective of this study was to determine the biomechanical properties of cartilage grown in a hollow-fiber bioreactor and their correlation with biochemical properties and magnetic resonance images (MRT). Engineered/grown cartilage has been shown to be a useful resource for cartilage repair [5]. The integrity and functional strength of engineered tissues are reflected in their biomechanical properties. A better understanding of the biomechanical properties of engineered cartilage can benefit us when designing a system to grow cartilage.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to determine the biomechanical properties of cartilage grown in a hollow-fiber bioreactor and their correlation with biochemical properties and magnetic resonance images (MRT). Engineered/grown cartilage has been shown to be a useful resource for cartilage repair [5]. The integrity and functional strength of engineered tissues are reflected in their biomechanical properties. A better understanding of the biomechanical properties of engineered cartilage can benefit us when designing a system to grow cartilage.