Addressing Scalability Issues in Semantics-Driven Recommender Systems

Mounir M. Bendouch, F. Frasincar, T. Robal
{"title":"Addressing Scalability Issues in Semantics-Driven Recommender Systems","authors":"Mounir M. Bendouch, F. Frasincar, T. Robal","doi":"10.1145/3486622.3493963","DOIUrl":null,"url":null,"abstract":"Content-based semantics-driven recommender systems are often used in the small-scale news recommendation domain. These recommender systems improve over TF-IDF by taking into account (domain) semantics through semantic lexicons or domain ontologies. Our work explores the application of such recommender systems to other domains, using the case of large-scale movie recommendations. We propose new methods to extract semantic features from various item descriptions, and for scaling up the semantics-driven approach with pre-computation of the cosine similarities and gradient learning of the model. The results of the study on a large-scale dataset of user ratings demonstrate that semantics-driven recommenders can be extended to more complex domains and outperform TF-IDF on ROC, PR, F1, and Kappa metrics.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Content-based semantics-driven recommender systems are often used in the small-scale news recommendation domain. These recommender systems improve over TF-IDF by taking into account (domain) semantics through semantic lexicons or domain ontologies. Our work explores the application of such recommender systems to other domains, using the case of large-scale movie recommendations. We propose new methods to extract semantic features from various item descriptions, and for scaling up the semantics-driven approach with pre-computation of the cosine similarities and gradient learning of the model. The results of the study on a large-scale dataset of user ratings demonstrate that semantics-driven recommenders can be extended to more complex domains and outperform TF-IDF on ROC, PR, F1, and Kappa metrics.
解决语义驱动推荐系统中的可扩展性问题
基于内容的语义驱动推荐系统常用于小规模新闻推荐领域。这些推荐系统通过语义词典或领域本体考虑(领域)语义来改进TF-IDF。我们的工作以大规模电影推荐为例,探索了这种推荐系统在其他领域的应用。我们提出了从各种项目描述中提取语义特征的新方法,并通过预计算余弦相似度和模型的梯度学习来扩展语义驱动方法。在大规模用户评分数据集上的研究结果表明,语义驱动的推荐可以扩展到更复杂的领域,并且在ROC、PR、F1和Kappa指标上优于TF-IDF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信