Rebecca L. Smith, K. Stika, D. J. Walls, Ye.Ye. Brun
{"title":"UV aging performance of Blue Light encapsulant films","authors":"Rebecca L. Smith, K. Stika, D. J. Walls, Ye.Ye. Brun","doi":"10.1109/PVSC.2013.6744451","DOIUrl":null,"url":null,"abstract":"To realize the power entitlement of high efficiency selective emitter and lightly doped emitter cells (Blue Light cells), module makers need encapsulants to transmit more usable short wavelength radiation (blue light). To date, most encapsulant manufacturers have done this by changing the stabilizer package added to the encapsulant polymer. Accelerated UV aging of these encapsulant materials was performed and the stability of Blue Light EVA was compared to both standard EVA and Blue Light ionomer film. The results indicate that Blue Light EVA is less stable to UV than standard EVA or Blue Light ionomer. As long term module reliability is clearly as important as initial module efficiency, it is essential that careful consideration and testing be completed before a material change is made.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"4 1","pages":"1600-1603"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To realize the power entitlement of high efficiency selective emitter and lightly doped emitter cells (Blue Light cells), module makers need encapsulants to transmit more usable short wavelength radiation (blue light). To date, most encapsulant manufacturers have done this by changing the stabilizer package added to the encapsulant polymer. Accelerated UV aging of these encapsulant materials was performed and the stability of Blue Light EVA was compared to both standard EVA and Blue Light ionomer film. The results indicate that Blue Light EVA is less stable to UV than standard EVA or Blue Light ionomer. As long term module reliability is clearly as important as initial module efficiency, it is essential that careful consideration and testing be completed before a material change is made.