{"title":"Self-tuning fuzzy controller design using genetic optimisation and neural network modelling","authors":"D.T. Pham, D. Karaboga","doi":"10.1016/S0954-1810(98)00017-X","DOIUrl":null,"url":null,"abstract":"<div><p>This article describes a new adaptive fuzzy logic control scheme. The proposed scheme is based on the structure of the self-tuning regulator and employs neural network and genetic algorithm techniques. The system comprises two main parts: on-line process identification and fuzzy logic controller modification using the identified model. A recurrent neural network performs the identification and a genetic algorithm obtains the best process model and evolves the best controller design. The paper presents simulation results for linear and non-linear processes to show the effectiveness of the proposed scheme.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 2","pages":"Pages 119-130"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00017-X","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095418109800017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
This article describes a new adaptive fuzzy logic control scheme. The proposed scheme is based on the structure of the self-tuning regulator and employs neural network and genetic algorithm techniques. The system comprises two main parts: on-line process identification and fuzzy logic controller modification using the identified model. A recurrent neural network performs the identification and a genetic algorithm obtains the best process model and evolves the best controller design. The paper presents simulation results for linear and non-linear processes to show the effectiveness of the proposed scheme.