Elements of an algorithm for optimizing a parameter-structural neural network

IF 0.3 Q4 REMOTE SENSING
M. Mrówczyńska
{"title":"Elements of an algorithm for optimizing a parameter-structural neural network","authors":"M. Mrówczyńska","doi":"10.1515/rgg-2016-0019","DOIUrl":null,"url":null,"abstract":"Abstract The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Geodesy and Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rgg-2016-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
参数结构神经网络优化算法的基本原理
测量结果提供的信息处理领域是大地测量技术的重要组成部分之一。这一领域的动态发展改进了经典数值计算算法在解析解方面难以实现。以人工神经网络为形式的基于人工智能的算法,包括神经元之间连接的拓扑结构,已经成为连接过程处理和建模问题的重要工具。这一概念源于神经网络和参数优化方法的整合,从而避免了任意定义网络结构的必要性。这种训练过程的扩展被称为数据处理分组方法(GMDH)算法,它属于进化算法的一类。本文提出了一种GMDH型网络,用于模拟钢烟囱在运行过程中几何轴的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
28.60%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信