Parallel sampling-based motion planning with superlinear speedup

Jeffrey Ichnowski, R. Alterovitz
{"title":"Parallel sampling-based motion planning with superlinear speedup","authors":"Jeffrey Ichnowski, R. Alterovitz","doi":"10.1109/IROS.2012.6386194","DOIUrl":null,"url":null,"abstract":"We present PRRT (Parallel RRT) and PRRT* (Parallel RRT*), sampling-based methods for feasible and optimal motion planning that are tailored to execute on modern multi-core CPUs. Our algorithmic improvements enable PRRT and PRRT* to achieve a superlinear speedup: when p processor cores are used instead of 1 processor core, computation time is sped up by a factor greater than p. To achieve this superlinear speedup, our algorithms utilize three key features: (1) lock-free parallelism using atomic operations to eliminate slowdowns caused by lock overhead and contention, (2) partition-based sampling to reduce the size of each processor core's working data set to improve cache efficiency, and (3) parallel backtracking to reduce the number of rewiring steps performed in PRRT*. Our parallel algorithms retain the ability to integrate with existing CPU-based libraries and algorithms. We demonstrate fast performance and superlinear speedups in two scenarios: (1) a holonomic disc-shaped robot moving in a planar environment and (2) an Aldebaran Nao small humanoid robot performing a 2-handed manipulation task using 10 DOF.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"15 2","pages":"1206-1212"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6386194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

We present PRRT (Parallel RRT) and PRRT* (Parallel RRT*), sampling-based methods for feasible and optimal motion planning that are tailored to execute on modern multi-core CPUs. Our algorithmic improvements enable PRRT and PRRT* to achieve a superlinear speedup: when p processor cores are used instead of 1 processor core, computation time is sped up by a factor greater than p. To achieve this superlinear speedup, our algorithms utilize three key features: (1) lock-free parallelism using atomic operations to eliminate slowdowns caused by lock overhead and contention, (2) partition-based sampling to reduce the size of each processor core's working data set to improve cache efficiency, and (3) parallel backtracking to reduce the number of rewiring steps performed in PRRT*. Our parallel algorithms retain the ability to integrate with existing CPU-based libraries and algorithms. We demonstrate fast performance and superlinear speedups in two scenarios: (1) a holonomic disc-shaped robot moving in a planar environment and (2) an Aldebaran Nao small humanoid robot performing a 2-handed manipulation task using 10 DOF.
基于并行采样的超线性加速运动规划
我们提出了PRRT (Parallel RRT)和PRRT* (Parallel RRT*),基于采样的可行和最佳运动规划方法,适合在现代多核cpu上执行。我们的算法改进使PRRT和PRRT*能够实现超线性加速:当使用p个处理器内核而不是1个处理器内核时,计算时间的加速系数大于p。为了实现这种超线性加速,我们的算法利用了三个关键特性:(1)使用原子操作的无锁并行性,以消除锁开销和争用造成的速度减慢;(2)基于分区的采样,以减少每个处理器核心工作数据集的大小,以提高缓存效率;(3)并行回溯,以减少在PRRT*中执行的重布线步骤的数量。我们的并行算法保留了与现有的基于cpu的库和算法集成的能力。我们展示了两种场景下的快速性能和超线性加速:(1)在平面环境中移动的完整圆盘形机器人和(2)使用10自由度执行双手操作任务的Aldebaran Nao小型人形机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信