Xinkun Tang, Ying Xu, Ouyang Feng, Ligu Zhu, Bo Peng
{"title":"A Cloud-Edge Collaborative Gaming Framework Using AI-Powered Foveated Rendering and Super Resolution","authors":"Xinkun Tang, Ying Xu, Ouyang Feng, Ligu Zhu, Bo Peng","doi":"10.4018/ijswis.321751","DOIUrl":null,"url":null,"abstract":"Cloud gaming (CG) has gradually gained popularity. By leveling shared computing resources on the cloud, CG technology allows those without expensive hardware to enjoy AAA games using a low-end device. However, the bandwidth requirement for streaming game video is high, which can cause backbone network congestion for large-scale deployment and expensive bandwidth bills. To address this challenge, the authors proposed an innovative edge-assisted computing architecture that collaboratively uses AI-powered foveated rendering (FR) and super-resolution (SR). Using FR, the cloud server can stream gaming video in lower resolution, significantly reducing the transmitted data volume. The edge server will then upscale the video using a game-specific SR model, recovering the quality of the video, especially for the areas players pay the most attention. The authors built a prototype system called FRSR and did thorough, objective comparative experiments to demonstrate that this architecture can reduce bandwidth usage by 39.47% compared with classic CG implementation for similar perceived quality.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"10 4","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.321751","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud gaming (CG) has gradually gained popularity. By leveling shared computing resources on the cloud, CG technology allows those without expensive hardware to enjoy AAA games using a low-end device. However, the bandwidth requirement for streaming game video is high, which can cause backbone network congestion for large-scale deployment and expensive bandwidth bills. To address this challenge, the authors proposed an innovative edge-assisted computing architecture that collaboratively uses AI-powered foveated rendering (FR) and super-resolution (SR). Using FR, the cloud server can stream gaming video in lower resolution, significantly reducing the transmitted data volume. The edge server will then upscale the video using a game-specific SR model, recovering the quality of the video, especially for the areas players pay the most attention. The authors built a prototype system called FRSR and did thorough, objective comparative experiments to demonstrate that this architecture can reduce bandwidth usage by 39.47% compared with classic CG implementation for similar perceived quality.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.