Zhaochen Zhang, Jianhui Nie, Mengjuan Yu, Xiao Liu
{"title":"SharpNet: A deep learning method for normal vector estimation of point cloud with sharp features","authors":"Zhaochen Zhang, Jianhui Nie, Mengjuan Yu, Xiao Liu","doi":"10.1016/j.gmod.2022.101167","DOIUrl":null,"url":null,"abstract":"<div><p>The normal vector is a basic attribute of point clouds. Traditional estimation methods are susceptible to noise and outliers. Recently, it reported that estimation robustness can be greatly improved by introducing Deep Neural Network (DNN), but how to accurately obtain the normal vector of sharp features still needs to be further studied. This paper proposes SharpNet, a DNN framework specializing in sharp features of CAD-like models, to transform problems into feature classification by the discretization of normal vector space. In order to eliminate the discretization error, a normal vector refining method is presented, which uses the difference between the initial normal vectors to distinguish neighborhood points of different local surface patches. Finally, the normal vector can be estimated accurately from the refined neighborhood points. Experiments show that our algorithm can estimate the normal vector of sharp features of CAD-like models accurately in challenging situations, and is superior to other DNN-based methods in terms of efficiency.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"124 ","pages":"Article 101167"},"PeriodicalIF":2.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070322000431","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The normal vector is a basic attribute of point clouds. Traditional estimation methods are susceptible to noise and outliers. Recently, it reported that estimation robustness can be greatly improved by introducing Deep Neural Network (DNN), but how to accurately obtain the normal vector of sharp features still needs to be further studied. This paper proposes SharpNet, a DNN framework specializing in sharp features of CAD-like models, to transform problems into feature classification by the discretization of normal vector space. In order to eliminate the discretization error, a normal vector refining method is presented, which uses the difference between the initial normal vectors to distinguish neighborhood points of different local surface patches. Finally, the normal vector can be estimated accurately from the refined neighborhood points. Experiments show that our algorithm can estimate the normal vector of sharp features of CAD-like models accurately in challenging situations, and is superior to other DNN-based methods in terms of efficiency.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.