{"title":"Functional complexity in the chorioallantoic membrane of an oviparous snake: Specializations for calcium uptake from the eggshell","authors":"Tom W. Ecay, James. R. Stewart, Maleka Khambaty","doi":"10.1002/jez.b.23146","DOIUrl":null,"url":null,"abstract":"<p>The chorioallantoic membrane of oviparous reptiles forms a vascular interface with the eggshell. The eggshell contains calcium, primarily as calcium carbonate. Extraction and mobilization of this calcium by the chorioallantoic membrane contributes importantly to embryonic nutrition. Development of the chorioallantoic membrane is primarily known from studies of squamates and birds. Although there are pronounced differences in eggshell structure, squamate and bird embryos each mobilize calcium from eggshells. Specialized cells in the chicken chorionic epithelium transport calcium from the eggshell aided by a second population of cells that secrete protons generated by the enzyme carbonic anhydrase. Calcium transporting cells also are present in the chorioallantoic membrane of corn snakes, although these cells function differently than those of chickens. We used histology and immunohistology to characterize the morphology and functional attributes of the chorioallantoic membrane of corn snakes. We identified two populations of cells in the outer layer of the chorionic epithelium. Calbindin-D<sub>28K</sub>, a cellular marker for calcium transport expressed in squamate chorioallantoic membranes, is localized in large, flattened cells that predominate in the chorionic epithelium. Smaller cells, interspersed among the large cells, express carbonic anhydrase 2, an enzyme not previously localized in the chorionic epithelium of an oviparous squamate. These findings indicate that differentiation of chorionic epithelial cells contributes to extraction and transport of calcium from the eggshell. The presence of specializations of chorioallantoic membranes for calcium uptake from eggshells in chickens and corn snakes suggests that eggshell calcium was a source of embryonic nutrition early in the evolution of Sauropsida.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"338 6","pages":"331-341"},"PeriodicalIF":1.8000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23146","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The chorioallantoic membrane of oviparous reptiles forms a vascular interface with the eggshell. The eggshell contains calcium, primarily as calcium carbonate. Extraction and mobilization of this calcium by the chorioallantoic membrane contributes importantly to embryonic nutrition. Development of the chorioallantoic membrane is primarily known from studies of squamates and birds. Although there are pronounced differences in eggshell structure, squamate and bird embryos each mobilize calcium from eggshells. Specialized cells in the chicken chorionic epithelium transport calcium from the eggshell aided by a second population of cells that secrete protons generated by the enzyme carbonic anhydrase. Calcium transporting cells also are present in the chorioallantoic membrane of corn snakes, although these cells function differently than those of chickens. We used histology and immunohistology to characterize the morphology and functional attributes of the chorioallantoic membrane of corn snakes. We identified two populations of cells in the outer layer of the chorionic epithelium. Calbindin-D28K, a cellular marker for calcium transport expressed in squamate chorioallantoic membranes, is localized in large, flattened cells that predominate in the chorionic epithelium. Smaller cells, interspersed among the large cells, express carbonic anhydrase 2, an enzyme not previously localized in the chorionic epithelium of an oviparous squamate. These findings indicate that differentiation of chorionic epithelial cells contributes to extraction and transport of calcium from the eggshell. The presence of specializations of chorioallantoic membranes for calcium uptake from eggshells in chickens and corn snakes suggests that eggshell calcium was a source of embryonic nutrition early in the evolution of Sauropsida.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.