Smart Powder Processing for Excellent Advanced Materials and Its Applications

IF 2.6 4区 材料科学 Q3 ENGINEERING, CHEMICAL
M. Naito, T. Kozawa, A. Kondo, C.C. Huang
{"title":"Smart Powder Processing for Excellent Advanced Materials and Its Applications","authors":"M. Naito, T. Kozawa, A. Kondo, C.C. Huang","doi":"10.14356/kona.2023001","DOIUrl":null,"url":null,"abstract":"To create advanced materials with minimal energy consumption and environmental impacts, a green and sustainable powder processing technology is essential. The authors have developed this technique based on powder grinding technology. In this paper, the authors will explain the recent progress of the smart powder processing, and its applications. Firstly, particle bonding process, and novel one-pot processing methods to synthesize nanoparticles, to create nanostructured composite granules and to form nano-porous films on substrates in dry phase will be discussed. Their applications on the advanced material fabrications contributing to the sustainable economy will also be explained. Then, the use of grinding technology in wet processing to synthesize nanoparticles and control their morphology will be explained. Smart powder processing can be a foundation to move forward material development technologies and create many more high-quality advanced materials in the future.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"11 35","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONA Powder and Particle Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14356/kona.2023001","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

Abstract

To create advanced materials with minimal energy consumption and environmental impacts, a green and sustainable powder processing technology is essential. The authors have developed this technique based on powder grinding technology. In this paper, the authors will explain the recent progress of the smart powder processing, and its applications. Firstly, particle bonding process, and novel one-pot processing methods to synthesize nanoparticles, to create nanostructured composite granules and to form nano-porous films on substrates in dry phase will be discussed. Their applications on the advanced material fabrications contributing to the sustainable economy will also be explained. Then, the use of grinding technology in wet processing to synthesize nanoparticles and control their morphology will be explained. Smart powder processing can be a foundation to move forward material development technologies and create many more high-quality advanced materials in the future.
优质先进材料的智能粉末加工及其应用
为了以最小的能源消耗和环境影响创造先进的材料,绿色和可持续的粉末加工技术是必不可少的。作者在粉末研磨技术的基础上发展了该技术。本文将介绍智能粉体加工的最新进展及其应用。首先,将讨论颗粒键合工艺,以及在干相衬底上合成纳米颗粒、制备纳米结构复合颗粒和形成纳米多孔膜的新型一锅加工方法。它们在先进材料制造中的应用有助于可持续经济的发展。然后,将解释在湿法加工中使用研磨技术合成纳米颗粒并控制其形貌。智能粉末加工可以成为推动材料开发技术的基础,并在未来创造出更多高质量的先进材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
KONA Powder and Particle Journal
KONA Powder and Particle Journal 工程技术-材料科学:综合
CiteScore
8.40
自引率
4.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: KONA publishes papers in the broad field of powder science and technology, ranging from fundamental principles to practical applications. Papers describing technological experience and critical reviews of existing knowledge in special areas are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信