Jundong Wu, Yawu Wang, Wenjun Ye, Jinhua She, C. Su
{"title":"Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator","authors":"Jundong Wu, Yawu Wang, Wenjun Ye, Jinhua She, C. Su","doi":"10.20965/jaciii.2023.p0235","DOIUrl":null,"url":null,"abstract":"Liquid crystal elastomer is a type of soft material with unique physical and chemical properties that offer a variety of possibilities in the growing field of soft robot actuators. This type of material is able to exhibit large, revertible deformation under various external stimuli, including heat, electric or magnetic fields, light, etc., which may lead to a wide range of different applications such as bio-sensors, artificial muscles, optical devices, solar cell plants, etc. With these possibilities, it is important to establish modeling and control strategies for liquid crystal elastomer-based actuators, to obtain the accurate prediction and description of its physical dynamics. However, so far, existing studies on this type of the actuators mainly focus on material properties and fabrication, the state of art on the modeling and control of such actuators is still preliminary. To gain a better understanding on current studies of the topic from the control perspective, this review provides a brief collection on recent studies on the modeling and control of the liquid crystal elastomer-based soft robot actuator. The review will introduce the deformation mechanism of the actuator, as well as basic concepts. Existing studies on the modeling and control for the liquid crystal elastomer-based actuator will be organized and introduced to provide an overview in this field as well as future insights.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"76 1-2","pages":"235-242"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Liquid crystal elastomer is a type of soft material with unique physical and chemical properties that offer a variety of possibilities in the growing field of soft robot actuators. This type of material is able to exhibit large, revertible deformation under various external stimuli, including heat, electric or magnetic fields, light, etc., which may lead to a wide range of different applications such as bio-sensors, artificial muscles, optical devices, solar cell plants, etc. With these possibilities, it is important to establish modeling and control strategies for liquid crystal elastomer-based actuators, to obtain the accurate prediction and description of its physical dynamics. However, so far, existing studies on this type of the actuators mainly focus on material properties and fabrication, the state of art on the modeling and control of such actuators is still preliminary. To gain a better understanding on current studies of the topic from the control perspective, this review provides a brief collection on recent studies on the modeling and control of the liquid crystal elastomer-based soft robot actuator. The review will introduce the deformation mechanism of the actuator, as well as basic concepts. Existing studies on the modeling and control for the liquid crystal elastomer-based actuator will be organized and introduced to provide an overview in this field as well as future insights.