The Effects of Loading History and Manufacturing Methods on the Mechanical Behavior of High-Density Polyethylene

IF 1.4 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. Dusunceli, B. Aydemir
{"title":"The Effects of Loading History and Manufacturing Methods on the Mechanical Behavior of High-Density Polyethylene","authors":"N. Dusunceli, B. Aydemir","doi":"10.1177/0095244311404181","DOIUrl":null,"url":null,"abstract":"This article describes a series of experiments conducted to determine the effects of loading history and manufacturing techniques on mechanical behavior of high- density polyethylene (HDPE). The main reason for undertaking the research was to investigate multiple creep, multiple relaxation, and cyclic loading on uniaxial tension. The samples used for tensile tests were obtained from extruded pipe and compression-molded sheets. The stress—strain responses of both samples under uniaxial tensile were found to be independent of the loading history. It was observed that the compression-molded specimens exhibit greater deformation ratio than the extruded specimen. Understanding the deformation behavior under different loading can offer the designer of high-density polyethylene products reliable data relevant to practical applications.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"70 2","pages":"451 - 468"},"PeriodicalIF":1.4000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0095244311404181","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers and Plastics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/0095244311404181","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

This article describes a series of experiments conducted to determine the effects of loading history and manufacturing techniques on mechanical behavior of high- density polyethylene (HDPE). The main reason for undertaking the research was to investigate multiple creep, multiple relaxation, and cyclic loading on uniaxial tension. The samples used for tensile tests were obtained from extruded pipe and compression-molded sheets. The stress—strain responses of both samples under uniaxial tensile were found to be independent of the loading history. It was observed that the compression-molded specimens exhibit greater deformation ratio than the extruded specimen. Understanding the deformation behavior under different loading can offer the designer of high-density polyethylene products reliable data relevant to practical applications.
加载历史和制造方法对高密度聚乙烯力学性能的影响
本文描述了一系列实验,以确定加载历史和制造技术对高密度聚乙烯(HDPE)力学行为的影响。进行研究的主要原因是为了研究单轴拉伸下的多重蠕变、多重松弛和循环加载。用于拉伸试验的样品是从挤压管和压模板中获得的。发现两种试样在单轴拉伸下的应力应变响应与加载历史无关。结果表明,挤压成型试样的变形比挤压成型试样大。了解不同载荷作用下高密度聚乙烯产品的变形行为,可以为高密度聚乙烯产品的设计者提供与实际应用相关的可靠数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elastomers and Plastics
Journal of Elastomers and Plastics 工程技术-材料科学:综合
CiteScore
3.30
自引率
5.90%
发文量
41
审稿时长
6 months
期刊介绍: The Journal of Elastomers and Plastics is a high quality peer-reviewed journal which publishes original research on the development and marketing of elastomers and plastics and the area in between where the characteristics of both extremes are apparent. The journal covers: advances in chemistry, processing, properties and applications; new information on thermoplastic elastomers, reinforced elastomers, natural rubbers, blends and alloys, and fillers and additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信