Extending explicit shape regression with mixed feature channels and pose priors

Matthias Richter, Hua Gao, H. K. Ekenel
{"title":"Extending explicit shape regression with mixed feature channels and pose priors","authors":"Matthias Richter, Hua Gao, H. K. Ekenel","doi":"10.1109/WACV.2014.6835993","DOIUrl":null,"url":null,"abstract":"Facial feature detection offers a wide range of applications, e.g. in facial image processing, human computer interaction, consumer electronics, and the entertainment industry. These applications impose two antagonistic key requirements: high processing speed and high detection accuracy. We address both by expanding upon the recently proposed explicit shape regression [1] to (a) allow usage and mixture of different feature channels, and (b) include head pose information to improve detection performance in non-cooperative environments. Using the publicly available “wild” datasets LFW [10] and AFLW [11], we show that using these extensions outperforms the baseline (up to 10% gain in accuracy at 8% IOD) as well as other state-of-the-art methods.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"71 7","pages":"1013-1019"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/WACV.2014.6835993","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Facial feature detection offers a wide range of applications, e.g. in facial image processing, human computer interaction, consumer electronics, and the entertainment industry. These applications impose two antagonistic key requirements: high processing speed and high detection accuracy. We address both by expanding upon the recently proposed explicit shape regression [1] to (a) allow usage and mixture of different feature channels, and (b) include head pose information to improve detection performance in non-cooperative environments. Using the publicly available “wild” datasets LFW [10] and AFLW [11], we show that using these extensions outperforms the baseline (up to 10% gain in accuracy at 8% IOD) as well as other state-of-the-art methods.
使用混合特征通道和位姿先验扩展显式形状回归
面部特征检测提供了广泛的应用,例如面部图像处理、人机交互、消费电子和娱乐行业。这些应用有两个关键的要求:高处理速度和高检测精度。我们通过扩展最近提出的显式形状回归[1]来解决这两个问题,以(a)允许使用和混合不同的特征通道,以及(b)包括头部姿势信息以提高非合作环境中的检测性能。使用公开可用的“野生”数据集LFW[10]和AFLW[11],我们表明使用这些扩展优于基线(在8% IOD下精度提高10%)以及其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信