Distribution of External Branch Lengths in Yule Histories

IF 0.7 4区 数学 Q2 MATHEMATICS
F. Disanto, Michael Fuchs
{"title":"Distribution of External Branch Lengths in Yule Histories","authors":"F. Disanto, Michael Fuchs","doi":"10.37236/11438","DOIUrl":null,"url":null,"abstract":"The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -also called histories- with a finite number $n$ of leaves. We study the lengths $\\ell_1 > \\ell_2 > \\cdots > \\ell_k > \\cdots$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \\rightarrow \\infty$, we show that the random variable $\\ell_k$, once rescaled as $\\frac{n-\\ell_k}{\\sqrt{n/2}}$, follows a $\\chi$-distribution with $2k$ degrees of freedom, with mean $\\mathbb E(\\ell_k) \\sim n$ and variance $\\mathbb V(\\ell_k) \\sim n \\big(k-\\frac{\\pi k^2}{16^k} \\binom{2k}{k}^2\\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"224 ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11438","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -also called histories- with a finite number $n$ of leaves. We study the lengths $\ell_1 > \ell_2 > \cdots > \ell_k > \cdots$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \rightarrow \infty$, we show that the random variable $\ell_k$, once rescaled as $\frac{n-\ell_k}{\sqrt{n/2}}$, follows a $\chi$-distribution with $2k$ degrees of freedom, with mean $\mathbb E(\ell_k) \sim n$ and variance $\mathbb V(\ell_k) \sim n \big(k-\frac{\pi k^2}{16^k} \binom{2k}{k}^2\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.
圣诞历史中外枝长度的分布
Yule分支过程是群体遗传学中基因树拓扑结构随机生成的经典模型。它生成具有有限数量$n$叶子的二元排序树(也称为历史树)。我们研究Yule生成的大小为$n$的随机历史的外部分支的长度$\ell_1 > \ell_2 > \cdots > \ell_k > \cdots$,其中外部分支的长度定义为其父节点的秩。当$n \rightarrow \infty$时,我们表明随机变量$\ell_k$,一旦重新缩放为$\frac{n-\ell_k}{\sqrt{n/2}}$,遵循$\chi$ -分布,自由度为$2k$,均值为$\mathbb E(\ell_k) \sim n$,方差为$\mathbb V(\ell_k) \sim n \big(k-\frac{\pi k^2}{16^k} \binom{2k}{k}^2\big)$。我们的研究结果有助于研究Yule产生的基因树的组合特征,其中外部分支与影响单个基因拷贝的单例突变相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信