Anti-control of chaos based on fuzzy neural networks inverse system method

H. Ren, Ding-I Liu
{"title":"Anti-control of chaos based on fuzzy neural networks inverse system method","authors":"H. Ren, Ding-I Liu","doi":"10.1109/ICMLC.2002.1174491","DOIUrl":null,"url":null,"abstract":"The problem considered in the paper is anti-control of chaos for a non-chaotic system via a fuzzy neural network inverse system (FNNIS) method. A Sugeno type fuzzy neural network (FNN) is trained to learn the kinetics of the non-chaotic system. The trained FNN model is employed in the inverse system method, thereby, the exact mathematic model of the system to be controlled is not necessary. The FNN model error upon control is studied and a related theorem is developed. Simulation results for continuous and discrete systems show the effectiveness of the method.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"152 2","pages":"796-799 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICMLC.2002.1174491","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1174491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem considered in the paper is anti-control of chaos for a non-chaotic system via a fuzzy neural network inverse system (FNNIS) method. A Sugeno type fuzzy neural network (FNN) is trained to learn the kinetics of the non-chaotic system. The trained FNN model is employed in the inverse system method, thereby, the exact mathematic model of the system to be controlled is not necessary. The FNN model error upon control is studied and a related theorem is developed. Simulation results for continuous and discrete systems show the effectiveness of the method.
基于模糊神经网络逆系统方法的混沌反控制
本文研究了用模糊神经网络逆系统(FNNIS)方法对非混沌系统进行混沌反控制的问题。训练Sugeno型模糊神经网络学习非混沌系统的动力学。将训练好的FNN模型应用于逆系统方法中,因此不需要被控系统的精确数学模型。研究了模糊神经网络模型的控制误差,并给出了相关定理。对连续和离散系统的仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信