PENGIMPLMENTASIAN ALGORITMA LONG SHORT-TERM MEMORY UNTUK MENDETEKSI UJARAN KEBENCIAN PADA APLIKASI TWITTER

Renaldo Yosia Rafael, Fransiskus Adikara
{"title":"PENGIMPLMENTASIAN ALGORITMA LONG SHORT-TERM MEMORY UNTUK MENDETEKSI UJARAN KEBENCIAN PADA APLIKASI TWITTER","authors":"Renaldo Yosia Rafael, Fransiskus Adikara","doi":"10.29100/jipi.v8i2.3490","DOIUrl":null,"url":null,"abstract":"Entering 2022, the number of internet users in Indonesia has reached 204.7 million users, where most of the internet us-age is for social media. Along with the high number of social media users, the Directorate of Cyber Crime of the Criminal Investigation Unit of the National Police found 89 verified social media content containing hate speech during the Febru-ary-March 2021 period, where the most content came from the Twitter application. Therefore, a research was conducted by implementing Machine learning to detect hate speech on the Twitter application using the Long short-term memory meth-od. Twitter data absorption was carried out by implementing the Tweepy Library by Muhammad Okky Ibrohim which was accessed via Kaggle for about 7 months, from March 20, 2018 to September 10, 2018. Data that has gone through text processing is then made into tokens which are a series of integer values. Then the LSTM model is built by compiling the input layer, LSTM layer, and output layer, to be trained later with training data that has been separated from the dataset. The researcher found that the results of the model training showed an accuracy of 95.74% and a loss value of 0.3463. When the trained model is used to make predictions on the test data, the researcher gets an accuracy value of 90% which indicates the model has made accurate predictions. Based on the model's performance in detecting hate speech, research-ers can conclude that hate speech detection on JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi ISSN: 2540-8984 Vol. 8, No. 2, Juni 2023, Pp. 551-560 552 Pengimplmentasian Algoritma Long Short-Term Memory Untuk Mendeteksi Ujaran Kebencian Pada Aplikasi Twitter Twitter can be done using Machine learning and Long short-term memory (LSTM) algorithms with a fairly high level of accuracy.","PeriodicalId":32696,"journal":{"name":"JIPI Jurnal IPA dan Pembelajaran IPA","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIPI Jurnal IPA dan Pembelajaran IPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29100/jipi.v8i2.3490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Entering 2022, the number of internet users in Indonesia has reached 204.7 million users, where most of the internet us-age is for social media. Along with the high number of social media users, the Directorate of Cyber Crime of the Criminal Investigation Unit of the National Police found 89 verified social media content containing hate speech during the Febru-ary-March 2021 period, where the most content came from the Twitter application. Therefore, a research was conducted by implementing Machine learning to detect hate speech on the Twitter application using the Long short-term memory meth-od. Twitter data absorption was carried out by implementing the Tweepy Library by Muhammad Okky Ibrohim which was accessed via Kaggle for about 7 months, from March 20, 2018 to September 10, 2018. Data that has gone through text processing is then made into tokens which are a series of integer values. Then the LSTM model is built by compiling the input layer, LSTM layer, and output layer, to be trained later with training data that has been separated from the dataset. The researcher found that the results of the model training showed an accuracy of 95.74% and a loss value of 0.3463. When the trained model is used to make predictions on the test data, the researcher gets an accuracy value of 90% which indicates the model has made accurate predictions. Based on the model's performance in detecting hate speech, research-ers can conclude that hate speech detection on JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi ISSN: 2540-8984 Vol. 8, No. 2, Juni 2023, Pp. 551-560 552 Pengimplmentasian Algoritma Long Short-Term Memory Untuk Mendeteksi Ujaran Kebencian Pada Aplikasi Twitter Twitter can be done using Machine learning and Long short-term memory (LSTM) algorithms with a fairly high level of accuracy.
进入2022年,印度尼西亚的互联网用户数量已达到2.047亿,其中大部分互联网用户是社交媒体。随着社交媒体用户数量的增加,国家警察刑事调查部门网络犯罪局在2021年2月至3月期间发现了89个包含仇恨言论的经过验证的社交媒体内容,其中大部分内容来自Twitter应用程序。因此,研究人员利用长短期记忆方法实现机器学习来检测Twitter应用程序上的仇恨言论。Twitter数据吸收是通过实现Muhammad Okky Ibrohim的Tweepy Library进行的,从2018年3月20日到2018年9月10日,该图书馆通过Kaggle访问了大约7个月。然后,经过文本处理的数据被制成一系列整数值的令牌。然后通过编译输入层、LSTM层和输出层来构建LSTM模型,然后使用从数据集中分离出来的训练数据进行训练。研究人员发现,模型训练的结果准确率为95.74%,损失值为0.3463。将训练好的模型用于对测试数据进行预测时,研究人员得到的准确率值为90%,表明该模型进行了准确的预测。基于该模型在仇恨言论检测中的表现,研究人员可以得出结论:JIPI (Journal Ilmiah Penelitian dan Pembelajaran Informatika)期刊主页:https://jurnal.stkippgritulungagung.ac.id/index.php/jipi ISSN:2540-8984 Vol. 8, No. 2, Juni 2023, Pp. 551-560 552 pengimplentasian algorithm长短期记忆Untuk Mendeteksi Ujaran Kebencian Pada applikasi Twitter Twitter可以使用机器学习和长短期记忆(LSTM)算法来完成,具有相当高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信