Nicole Lopes Bento, Gabriel Araújo e Silva Ferraz, Lucas Santos Santana, Rafael de Oliveira Faria, Jhones da Silva Amorim, Mirian de Lourdes Oliveira e Silva, Michel Martins Araújo Silva, Diego José Carvalho Alonso
{"title":"Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system","authors":"Nicole Lopes Bento, Gabriel Araújo e Silva Ferraz, Lucas Santos Santana, Rafael de Oliveira Faria, Jhones da Silva Amorim, Mirian de Lourdes Oliveira e Silva, Michel Martins Araújo Silva, Diego José Carvalho Alonso","doi":"10.1007/s11119-023-10090-0","DOIUrl":null,"url":null,"abstract":"<p>Soil compaction is considered one of the main threats to structural soil degradation, and it promotes increased densification of soil particles, impairs ecosystem services, the plant development, and therefore affects agricultural profitability. In this sense, this study aimed to analyze the feasibility of using a Remotely Piloted Aircraft System (RPAS) by relating parameters derived from aerial images based on Vegetation Indices (VIs) and the Canopy Height Model (CHM) with soil compaction in a coffee plantation area. The study was conducted in a commercial coffee plantation with the cultivar Mundo Novo with 14 years of implantation. Two aerial surveys were carried out, the first to determine the CHM and define the sampling points and the second for radiometric calculations of VIs. In the sampling point were collected data plant height, soil characterization, soil penetration resistance and productivity. Images were processed by Pix4D software, and the data analysis at QGIS and RStudio. As at results, no statistically significant differences were detected between the different plant height zones in the soil chemical analysis; significant statistical differences between plant height zones were detected for penetration resistance, which is correlated to productivity data; and the radiometric data presented a correlation with the penetration resistance data, making it possible to determine VIs (NDRE and MTCI) with correlation to the compaction data allowing the estimation of such variable. In this way, the possibility of monitoring the height variations of the coffee crop using RPAS to demarcate compacted zones was evidenced.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"55 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10090-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil compaction is considered one of the main threats to structural soil degradation, and it promotes increased densification of soil particles, impairs ecosystem services, the plant development, and therefore affects agricultural profitability. In this sense, this study aimed to analyze the feasibility of using a Remotely Piloted Aircraft System (RPAS) by relating parameters derived from aerial images based on Vegetation Indices (VIs) and the Canopy Height Model (CHM) with soil compaction in a coffee plantation area. The study was conducted in a commercial coffee plantation with the cultivar Mundo Novo with 14 years of implantation. Two aerial surveys were carried out, the first to determine the CHM and define the sampling points and the second for radiometric calculations of VIs. In the sampling point were collected data plant height, soil characterization, soil penetration resistance and productivity. Images were processed by Pix4D software, and the data analysis at QGIS and RStudio. As at results, no statistically significant differences were detected between the different plant height zones in the soil chemical analysis; significant statistical differences between plant height zones were detected for penetration resistance, which is correlated to productivity data; and the radiometric data presented a correlation with the penetration resistance data, making it possible to determine VIs (NDRE and MTCI) with correlation to the compaction data allowing the estimation of such variable. In this way, the possibility of monitoring the height variations of the coffee crop using RPAS to demarcate compacted zones was evidenced.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.