Jonas Trenz, Emir Memic, William D. Batchelor, Simone Graeff-Hönninger
{"title":"Generic optimization approach of soil hydraulic parameters for site-specific model applications","authors":"Jonas Trenz, Emir Memic, William D. Batchelor, Simone Graeff-Hönninger","doi":"10.1007/s11119-023-10087-9","DOIUrl":null,"url":null,"abstract":"<p>Site-specific crop management is based on the postulate of varying soil and crop requirements in a field. Therefore, a field is separated into homogenous management zones, using available data to adapt management practices environment to maximize productivity and profitability while reducing environmental impacts. Due to advancing sensor technologies, crop growth and yield data on more minor scales are common, but soil data often needs to be more appropriate. Crop growth models have shown promise as a decision support tool for site-specific farming. The Decision Support System for Agrotechnology Transfer (DSSAT) is a widely used point-based model. To overcome the problem of inappropriate soil input data problem, this study introduces an external plug-in program called Soil Profile Optimizer (SPO), which uses the current DSSAT v4.8 to calibrate soil profile parameters on a site-specific level. Developed as an inverse modelling approach, the SPO can calibrate selected soil profile parameters by targeting available in-season plant data. Root Mean Square Error (RMSE) and normalized RMSE as error minimization criteria are used. The SPO was tested and evaluated by comparing different simulation scenarios in a case study of a 3-yr field trial with maize. The scenario with optimized soil profiles, conducted with the SPO, resulted in an R<sup>2</sup> of 0.76 between simulated and observed yield and led to significant improvements compared to the scenario conducted with field scale soil profile information (R<sup>2</sup> 0.03). The SPO showed promise in using spatial plant measurements to estimate management zone scale soil parameters required for the DSSAT model.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10087-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Site-specific crop management is based on the postulate of varying soil and crop requirements in a field. Therefore, a field is separated into homogenous management zones, using available data to adapt management practices environment to maximize productivity and profitability while reducing environmental impacts. Due to advancing sensor technologies, crop growth and yield data on more minor scales are common, but soil data often needs to be more appropriate. Crop growth models have shown promise as a decision support tool for site-specific farming. The Decision Support System for Agrotechnology Transfer (DSSAT) is a widely used point-based model. To overcome the problem of inappropriate soil input data problem, this study introduces an external plug-in program called Soil Profile Optimizer (SPO), which uses the current DSSAT v4.8 to calibrate soil profile parameters on a site-specific level. Developed as an inverse modelling approach, the SPO can calibrate selected soil profile parameters by targeting available in-season plant data. Root Mean Square Error (RMSE) and normalized RMSE as error minimization criteria are used. The SPO was tested and evaluated by comparing different simulation scenarios in a case study of a 3-yr field trial with maize. The scenario with optimized soil profiles, conducted with the SPO, resulted in an R2 of 0.76 between simulated and observed yield and led to significant improvements compared to the scenario conducted with field scale soil profile information (R2 0.03). The SPO showed promise in using spatial plant measurements to estimate management zone scale soil parameters required for the DSSAT model.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.