Polynomial bounds for chromatic number. V. Excluding a tree of radius two and a complete multipartite graph

IF 1.2 1区 数学 Q1 MATHEMATICS
Alex Scott , Paul Seymour
{"title":"Polynomial bounds for chromatic number. V. Excluding a tree of radius two and a complete multipartite graph","authors":"Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.jctb.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>The Gyárfás-Sumner conjecture says that for every forest <em>H</em> and every integer <em>k</em>, if <em>G</em> is <em>H</em>-free and does not contain a clique on <em>k</em> vertices then it has bounded chromatic number. (A graph is <em>H-free</em> if it does not contain an induced copy of <em>H</em>.) Kierstead and Penrice proved it for trees of radius at most two, but otherwise the conjecture is known only for a few simple types of forest. More is known if we exclude a complete bipartite subgraph instead of a clique: Rödl showed that, for every forest <em>H</em>, if <em>G</em> is <em>H</em>-free and does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> as a subgraph then it has bounded chromatic number. In an earlier paper with Sophie Spirkl, we strengthened Rödl's result, showing that for every forest <em>H</em>, the bound on chromatic number can be taken to be polynomial in <em>t</em>. In this paper, we prove a related strengthening of the Kierstead-Penrice theorem, showing that for every tree <em>H</em> of radius two and integer <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <em>G</em> is <em>H</em>-free and does not contain as a subgraph the complete <em>d</em>-partite graph with parts of cardinality <em>t</em>, then its chromatic number is at most polynomial in <em>t</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 473-491"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000874","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The Gyárfás-Sumner conjecture says that for every forest H and every integer k, if G is H-free and does not contain a clique on k vertices then it has bounded chromatic number. (A graph is H-free if it does not contain an induced copy of H.) Kierstead and Penrice proved it for trees of radius at most two, but otherwise the conjecture is known only for a few simple types of forest. More is known if we exclude a complete bipartite subgraph instead of a clique: Rödl showed that, for every forest H, if G is H-free and does not contain Kt,t as a subgraph then it has bounded chromatic number. In an earlier paper with Sophie Spirkl, we strengthened Rödl's result, showing that for every forest H, the bound on chromatic number can be taken to be polynomial in t. In this paper, we prove a related strengthening of the Kierstead-Penrice theorem, showing that for every tree H of radius two and integer d2, if G is H-free and does not contain as a subgraph the complete d-partite graph with parts of cardinality t, then its chromatic number is at most polynomial in t.

色数的多项式界。排除半径为2的树和完全多部图
Gyárfás-Sumner猜想说,对于每一个森林H和每一个整数k,如果G不含H,并且在k个顶点上不包含团,那么它有一个有界的色数。(如果一个图不包含h的诱导拷贝,那么它就是无h的。)Kierstead和Penrice证明了它适用于半径不超过2的树,但除此之外,这个猜想只适用于几种简单类型的森林。如果我们排除一个完全二部子图而不是一个团,我们会知道更多:Rödl表明,对于每一个森林H,如果G是H自由的,并且不包含Kt,t作为子图,那么它有有界的色数。与苏菲Spirkl在先前发表的一篇论文中,我们加强Rodl的结果,显示每一个森林H,绑定在彩色数字可以采取多项式在t。在这篇文章中,我们证明了一个有关加强Kierstead-Penrice定理,表明H的每棵树半径两个整数d≥2,如果G H-free和不包含子图的完整d-partite图形部分的基数t,那么它的色号是最多的多项式t。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信