Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs

IF 1.2 1区 数学 Q1 MATHEMATICS
Tara Abrishami , Bogdan Alecu , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl
{"title":"Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs","authors":"Tara Abrishami ,&nbsp;Bogdan Alecu ,&nbsp;Maria Chudnovsky ,&nbsp;Sepehr Hajebi ,&nbsp;Sophie Spirkl","doi":"10.1016/j.jctb.2023.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>We say a class <span><math><mi>C</mi></math></span> of graphs is <em>clean</em> if for every positive integer <em>t</em> there exists a positive integer <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that every graph in <span><math><mi>C</mi></math></span> with treewidth more than <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> contains an induced subgraph isomorphic to one of the following: the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall or the line graph of a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all <em>H-free</em> graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph <em>H</em>) is clean if and only if <em>H</em> is a forest whose components are subdivided stars.</p><p>Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest <em>H</em> as above, we show that forbidding certain connected graphs containing <em>H</em> as an induced subgraph (rather than <em>H</em> itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer <em>η</em>, a complete description of unavoidable connected induced subgraphs of a connected graph <em>G</em> containing <em>η</em> vertices from a suitably large given set of vertices in <em>G</em>. This is of independent interest, and will be used in subsequent papers in this series.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 443-472"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000904","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

We say a class C of graphs is clean if for every positive integer t there exists a positive integer w(t) such that every graph in C with treewidth more than w(t) contains an induced subgraph isomorphic to one of the following: the complete graph Kt, the complete bipartite graph Kt,t, a subdivision of the (t×t)-wall or the line graph of a subdivision of the (t×t)-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all H-free graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph H) is clean if and only if H is a forest whose components are subdivided stars.

Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest H as above, we show that forbidding certain connected graphs containing H as an induced subgraph (rather than H itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer η, a complete description of unavoidable connected induced subgraphs of a connected graph G containing η vertices from a suitably large given set of vertices in G. This is of independent interest, and will be used in subsequent papers in this series.

诱导子图和树分解7。无h图中的基本障碍
如果对于每一个正整数t,存在一个正整数w(t),使得C中的每一个树宽大于w(t)的图都包含一个诱导子图同构于下列任意一个:完全图Kt,完全二部图Kt,t, (t×t)-墙的一个细分或(t×t)-墙的一个细分的线形图。在本文中,我们采用了Lozin和Razgon的一种方法(基于Weißauer的早期思想)来证明所有无H图(即没有诱导子图同构于固定图H的图)的类是干净的,当且仅当H是一个组成部分为细分星的森林。他们的方法很容易应用于产生上述表征。然而,我们的主要结果更强:对于上面的每个森林H,我们表明,禁止某些包含H作为诱导子图(而不是H本身)的连接图足以获得一个干净的图类。在证明后一种强化的基础上,我们在Davies的结果的基础上,对每一个正整数η,给出了连通图G的不可避免连通诱导子图的完整描述,其中η顶点来自G中一个适当大的给定顶点集。这是一个独立的兴趣,将在本系列的后续论文中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信