Tara Abrishami , Bogdan Alecu , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl
{"title":"Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs","authors":"Tara Abrishami , Bogdan Alecu , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl","doi":"10.1016/j.jctb.2023.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>We say a class <span><math><mi>C</mi></math></span> of graphs is <em>clean</em> if for every positive integer <em>t</em> there exists a positive integer <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that every graph in <span><math><mi>C</mi></math></span> with treewidth more than <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> contains an induced subgraph isomorphic to one of the following: the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall or the line graph of a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all <em>H-free</em> graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph <em>H</em>) is clean if and only if <em>H</em> is a forest whose components are subdivided stars.</p><p>Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest <em>H</em> as above, we show that forbidding certain connected graphs containing <em>H</em> as an induced subgraph (rather than <em>H</em> itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer <em>η</em>, a complete description of unavoidable connected induced subgraphs of a connected graph <em>G</em> containing <em>η</em> vertices from a suitably large given set of vertices in <em>G</em>. This is of independent interest, and will be used in subsequent papers in this series.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 443-472"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000904","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
We say a class of graphs is clean if for every positive integer t there exists a positive integer such that every graph in with treewidth more than contains an induced subgraph isomorphic to one of the following: the complete graph , the complete bipartite graph , a subdivision of the -wall or the line graph of a subdivision of the -wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all H-free graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph H) is clean if and only if H is a forest whose components are subdivided stars.
Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest H as above, we show that forbidding certain connected graphs containing H as an induced subgraph (rather than H itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer η, a complete description of unavoidable connected induced subgraphs of a connected graph G containing η vertices from a suitably large given set of vertices in G. This is of independent interest, and will be used in subsequent papers in this series.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.