{"title":"Optical skipping rope induced transverse OAM for particle orbital motion parallel to the optical axis","authors":"Liuhao Zhu, Xiaohe Zhang, Guanghao Rui, Jun He, Bing Gu, Qiwen Zhan","doi":"10.1515/nanoph-2023-0551","DOIUrl":null,"url":null,"abstract":"In structured light tweezers, it is a challenging technical issue to realize the complete circular motion of the trapped particles parallel to the optical axis. Herein, we propose and generate a novel optical skipping rope via combining beam shaping technology, Fourier shift theorem, and beam grafting technology. This optical skipping rope can induce the transverse orbital angular momentum (OAM) (i.e., nominal OAM, whose direction is perpendicular to the optical axis) and transfer it to the particles, so that the particles have a transverse torque, thereby causing the particles to rotate parallel to the optical axis. Experimentally, our optical tweezers validate that the designed optical skipping rope realizes the orbital motion of polystyrene particles parallel to the optical axis. Additionally, the experiments also demonstrate that the optical skipping ropes manipulate particles to move along the oblique coil trajectory and three-dimensional (3D) cycloidal trajectory. Using the laser beam induced OAM, this innovative technology increases the degree of freedom for manipulating particles, which is of great significance for the application of optical tweezers in optical manipulation, micromechanics, and mimicry of celestial orbits.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"52 25","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2023-0551","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In structured light tweezers, it is a challenging technical issue to realize the complete circular motion of the trapped particles parallel to the optical axis. Herein, we propose and generate a novel optical skipping rope via combining beam shaping technology, Fourier shift theorem, and beam grafting technology. This optical skipping rope can induce the transverse orbital angular momentum (OAM) (i.e., nominal OAM, whose direction is perpendicular to the optical axis) and transfer it to the particles, so that the particles have a transverse torque, thereby causing the particles to rotate parallel to the optical axis. Experimentally, our optical tweezers validate that the designed optical skipping rope realizes the orbital motion of polystyrene particles parallel to the optical axis. Additionally, the experiments also demonstrate that the optical skipping ropes manipulate particles to move along the oblique coil trajectory and three-dimensional (3D) cycloidal trajectory. Using the laser beam induced OAM, this innovative technology increases the degree of freedom for manipulating particles, which is of great significance for the application of optical tweezers in optical manipulation, micromechanics, and mimicry of celestial orbits.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.