The metaplectic action on modulation spaces

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Hartmut Führ , Irina Shafkulovska
{"title":"The metaplectic action on modulation spaces","authors":"Hartmut Führ ,&nbsp;Irina Shafkulovska","doi":"10.1016/j.acha.2023.101604","DOIUrl":null,"url":null,"abstract":"<div><p>We study the mapping properties of metaplectic operators <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mrow><mi>Mp</mi></mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> on modulation spaces of the type <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Our main result is a full characterization of the pairs <span><math><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> for which the operator <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is <em>(i)</em> well-defined, <em>(ii)</em> bounded. It turns out that these two properties are equivalent, and they entail that <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> transfers to <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101604"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S106352032300091X/pdfft?md5=0769848d44f7ddda38eab0321ccdd78e&pid=1-s2.0-S106352032300091X-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032300091X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

We study the mapping properties of metaplectic operators SˆMp(2d,R) on modulation spaces of the type Mmp,q(Rd). Our main result is a full characterization of the pairs (Sˆ,Mp,q(Rd)) for which the operator Sˆ:Mp,q(Rd)Mp,q(Rd) is (i) well-defined, (ii) bounded. It turns out that these two properties are equivalent, and they entail that Sˆ is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of Sˆ:Mp,q(Rd)Mp,q(Rd) transfers to Sˆ:Mmp,q(Rd)Mmp,q(Rd).

调制空间上的变形作用
研究了广义算子S∈Mp(2d,R)在Mmp,q(Rd)型调制空间上的映射性质。我们的主要结果是对(S´,Mp,q(Rd))的完整刻划,其中算子S´:Mp,q(Rd)→Mp,q(Rd)是(i)定义良好的,(ii)有界的。结果证明这两个性质是等价的,它们推导出S是一个巴拿赫空间自同构。对于多项式有界权函数,我们提供了一个简单充分的判别准则,以确定S°:Mp,q(Rd)→Mp,q(Rd)的自定义性(有界性)是否转移到S°:Mmp,q(Rd)→Mmp,q(Rd)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信