Localized surface plasmon resonance properties dependence of green-synthesized Fe3O4/Ag composite nanoparticles on Ag concentration and an electric field for biosensor application

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sari Wahyuni , Muhammad Riswan , Nanang Adrianto , Mahardika Yoga Dharmawan , Rivaldo Marsel Tumbelaka , Rona Cuana , Nurul Imani Istiqomah , Adhistinka Jiananda , Shania Garcia , Edi Suharyadi
{"title":"Localized surface plasmon resonance properties dependence of green-synthesized Fe3O4/Ag composite nanoparticles on Ag concentration and an electric field for biosensor application","authors":"Sari Wahyuni ,&nbsp;Muhammad Riswan ,&nbsp;Nanang Adrianto ,&nbsp;Mahardika Yoga Dharmawan ,&nbsp;Rivaldo Marsel Tumbelaka ,&nbsp;Rona Cuana ,&nbsp;Nurul Imani Istiqomah ,&nbsp;Adhistinka Jiananda ,&nbsp;Shania Garcia ,&nbsp;Edi Suharyadi","doi":"10.1016/j.photonics.2023.101191","DOIUrl":null,"url":null,"abstract":"<div><p>The use of green-synthesized Fe<sub>3</sub>O<sub>4</sub><span>/Ag composites nanoparticles<span> (NPs) on the surface plasmon<span><span> resonance (SPR) system induced by the electric field generates the effect of electrooptic-localized surface plasmon resonance (EO-LSPR). EO-LSPR is the promising method to increase dispersibility, generate plasmons, bind to biomolecular targets, modify the </span>refractive index, and increase the SPR signal. Green synthesis of Fe</span></span></span><sub>3</sub>O<sub>4</sub>/Ag NPs has several advantages, including being environmentally friendly, cost-effective, and sustainable. This research successfully investigated the EO-LSPR properties of green-synthesized Fe<sub>3</sub>O<sub>4</sub>/Ag NPs with various Ag concentrations. Green synthesis of Fe<sub>3</sub>O<sub>4</sub>/Ag composites NPs was prepared utilizing <em>Moringa oleifera</em><span> by an aqueous solution method. The EO-LSPR phenomenon was investigated by applying various voltages in the Kretschmann configuration with a layer arrangement of a prism/Au thin film/NPs/air with a wavelength of 632.8 nm. Transmission electron microscope results show that the average size of Fe</span><sub>3</sub>O<sub>4</sub>/Ag particles is around 16.72 ± 7.30 nm. The scanning electron microscopy-energy dispersive x-ray results showed that Ag was distributed on the surface of Fe<sub>3</sub>O<sub>4</sub><span><span>. The addition of Ag concentration decreased the saturation magnetization while the </span>coercivity field increased. The SPR angle of the prism/Au thin film/air layer structures is 44.66°. After depositing with Fe</span><sub>3</sub>O<sub>4</sub>/Ag with an Ag concentration of 60 millimolar, the LSPR angle shifted by 0.98°. Under an electric field, the LSPR angle shifted to 1.00°, 1.17°, and 1.22° of 2 volts, 4 volts, and 6 volts, respectively. The results show that applying the electric field induces the LSPR angle of Fe<sub>3</sub>O<sub>4</sub>/Ag NPs to shift to a larger angle. Applying an electric field causes a change in the material's refractive index. The greater the applied electric field, the more significant the LSPR angle shifts. The significant shifts in the LSPR angle due to the application of an electric field indicate that the EO-LSPR system using green-synthesized Fe<sub>3</sub>O<sub>4</sub><span>/Ag composites NPs could be a promising alternative to increase the performance of SPR biosensors in the future.</span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"57 ","pages":"Article 101191"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441023000858","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of green-synthesized Fe3O4/Ag composites nanoparticles (NPs) on the surface plasmon resonance (SPR) system induced by the electric field generates the effect of electrooptic-localized surface plasmon resonance (EO-LSPR). EO-LSPR is the promising method to increase dispersibility, generate plasmons, bind to biomolecular targets, modify the refractive index, and increase the SPR signal. Green synthesis of Fe3O4/Ag NPs has several advantages, including being environmentally friendly, cost-effective, and sustainable. This research successfully investigated the EO-LSPR properties of green-synthesized Fe3O4/Ag NPs with various Ag concentrations. Green synthesis of Fe3O4/Ag composites NPs was prepared utilizing Moringa oleifera by an aqueous solution method. The EO-LSPR phenomenon was investigated by applying various voltages in the Kretschmann configuration with a layer arrangement of a prism/Au thin film/NPs/air with a wavelength of 632.8 nm. Transmission electron microscope results show that the average size of Fe3O4/Ag particles is around 16.72 ± 7.30 nm. The scanning electron microscopy-energy dispersive x-ray results showed that Ag was distributed on the surface of Fe3O4. The addition of Ag concentration decreased the saturation magnetization while the coercivity field increased. The SPR angle of the prism/Au thin film/air layer structures is 44.66°. After depositing with Fe3O4/Ag with an Ag concentration of 60 millimolar, the LSPR angle shifted by 0.98°. Under an electric field, the LSPR angle shifted to 1.00°, 1.17°, and 1.22° of 2 volts, 4 volts, and 6 volts, respectively. The results show that applying the electric field induces the LSPR angle of Fe3O4/Ag NPs to shift to a larger angle. Applying an electric field causes a change in the material's refractive index. The greater the applied electric field, the more significant the LSPR angle shifts. The significant shifts in the LSPR angle due to the application of an electric field indicate that the EO-LSPR system using green-synthesized Fe3O4/Ag composites NPs could be a promising alternative to increase the performance of SPR biosensors in the future.

绿色合成Fe3O4/Ag复合纳米颗粒的局域表面等离子体共振特性与Ag浓度和电场的关系
在电场诱导的表面等离子体共振(SPR)系统上使用绿色合成的Fe3O4/Ag复合纳米颗粒(NP)产生了电光局域表面等离子体共振的效应。EO-LSPR是一种很有前途的方法,可以提高分散性,产生等离子体,与生物分子靶结合,改变折射率,增加SPR信号。Fe3O4/Ag纳米颗粒的绿色合成具有几个优点,包括环保、成本效益和可持续性。本研究成功地研究了不同Ag浓度下绿色合成的Fe3O4/Ag纳米颗粒的EO-LSPR性能。以辣木为原料,采用水溶液法制备了绿色合成Fe3O4/Ag复合纳米颗粒。通过在Kretschmann结构中施加不同电压,研究了EO-LSPR现象,该结构具有632.8nm的棱镜/Au薄膜/NPs/空气层排列。透射电子显微镜结果表明,Fe3O4/Ag颗粒的平均尺寸约为16.72±7.30nm分布在Fe3O4表面。Ag浓度的增加降低了饱和磁化强度,而矫顽力场增加。棱镜/Au薄膜/空气层结构的SPR角为44.66°。用Ag浓度为60毫摩尔的Fe3O4/Ag沉积后,LSPR角移动了0.98°。在电场作用下,LSPR角度分别移动到2伏、4伏和6伏的1.00°、1.17°和1.22°。结果表明,施加电场会使Fe3O4/Ag纳米颗粒的LSPR角向更大的角度移动。施加电场会使材料的折射率发生变化。施加的电场越大,LSPR角度偏移就越显著。由于电场的应用,LSPR角的显著变化表明,使用绿色合成的Fe3O4/Ag复合纳米颗粒的EO-LSPR系统可能是未来提高SPR生物传感器性能的一种很有前途的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信