{"title":"Recent advances in describing and driving crystal nucleation using machine learning and artificial intelligence","authors":"Eric R. Beyerle , Ziyue Zou , Pratyush Tiwary","doi":"10.1016/j.cossms.2023.101093","DOIUrl":null,"url":null,"abstract":"<div><p>With the advent of faster computer processors and especially graphics processing units (GPUs) over the last few decades, the use of data-intensive machine learning (ML) and artificial intelligence (AI) has increased greatly, and the study of crystal nucleation has been one of the beneficiaries. In this review, we outline how ML and AI have been applied to address four outstanding difficulties of crystal nucleation: how to discover better reaction coordinates (RCs) for describing accurately non-classical nucleation situations; the development of more accurate force fields for describing the nucleation of multiple polymorphs or phases for a single system; more robust identification methods for determining crystal phases and structures; and as a method to yield improved course-grained models for studying nucleation.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 4","pages":"Article 101093"},"PeriodicalIF":12.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
With the advent of faster computer processors and especially graphics processing units (GPUs) over the last few decades, the use of data-intensive machine learning (ML) and artificial intelligence (AI) has increased greatly, and the study of crystal nucleation has been one of the beneficiaries. In this review, we outline how ML and AI have been applied to address four outstanding difficulties of crystal nucleation: how to discover better reaction coordinates (RCs) for describing accurately non-classical nucleation situations; the development of more accurate force fields for describing the nucleation of multiple polymorphs or phases for a single system; more robust identification methods for determining crystal phases and structures; and as a method to yield improved course-grained models for studying nucleation.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field