The Stanley decomposition of the harmonic oscillator

L.J. Billera , R. Cushman , J.A. Sanders
{"title":"The Stanley decomposition of the harmonic oscillator","authors":"L.J. Billera ,&nbsp;R. Cushman ,&nbsp;J.A. Sanders","doi":"10.1016/S1385-7258(88)80017-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives a new decomposition for the ring of polynomial functions on the variety of (<em>n</em> + 1) × (<em>n</em> + 1) complex matrices of rank less than or equal to one. This involves decomposing the monoid <span><span><span><math><mrow><msub><mo>M</mo><mi>n</mi></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>∈</mo><msup><mi>ℕ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi>ℕ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mrow><mo>|</mo><mrow><mo>|</mo><mi>j</mi><mo>|</mo><mo>=</mo><mo>|</mo><mi>k</mi><mo>|</mo></mrow></mrow><mo>}</mo></mrow></math></span></span></span> into a finite disjoint union of translates of ℕ cones based on certain 2<em>n</em> simplices in ℝ<sup>2n+2</sup>. As a consequence we have a method for writing the normal form of a perturbed <em>n</em>+1 dimensional harmonic oscillator in a unique way.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 4","pages":"Pages 375-393"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80017-9","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This paper gives a new decomposition for the ring of polynomial functions on the variety of (n + 1) × (n + 1) complex matrices of rank less than or equal to one. This involves decomposing the monoid Mn={(j,k)n+1×n+1||j|=|k|} into a finite disjoint union of translates of ℕ cones based on certain 2n simplices in ℝ2n+2. As a consequence we have a method for writing the normal form of a perturbed n+1 dimensional harmonic oscillator in a unique way.

谐振子的Stanley分解
本文给出了秩小于或等于1的(n+1)×。这涉及到分解monoid Mn={(j,k)∈ℕn+1×ℕn+1||j|=|k|}转化为ℕ 中基于某些2n单纯形的锥ℝ2n+2。因此,我们有一种以独特的方式写入扰动n+1维谐振子的正规形式的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信