{"title":"A comparative study of seismic tomography models of the Chinese continental lithosphere","authors":"Xuezhen Zhang , Xiaodong Song , Jiangtao Li","doi":"10.1016/j.eqs.2022.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>The Chinese mainland is subject to complicated plate interactions that give rise to its complex structure and tectonics. While several seismic velocity models have been developed for the Chinese mainland, apparent discrepancies exist and, so far, little effort has been made to evaluate their reliability and consistency. Such evaluations are important not only for the application and interpretation of model results but also for future model improvement. To address this problem, here we compare five published shear-wave velocity models with a focus on model consistency. The five models were derived from different datasets and methods (i.e., body waves, surface waves from earthquakes, surface waves from noise interferometry, and full waves) and interpolated into uniform horizontal grids (0.5° × 0.5°) with vertical sampling points at 5 km, 10 km, and then 20 km intervals to a depth of 160 km below the surface, from which we constructed an averaged model (AM) as a common reference for comparative study. We compare both the absolute velocity values and perturbation patterns of these models. Our comparisons show that the models have large (> 4%) differences in absolute values, and these differences are independent of data coverage and model resolution. The perturbation patterns of the models also show large differences, although some of the models show a high degree of consistency within certain depth ranges. The observed inconsistencies may reflect limited model resolution but, more importantly, systematic differences in the datasets and methods employed. Thus, despite several seismic models being published for this region, there is significant room for improvement. In particular, the inconsistencies in both data and methodologies need to be resolved in future research. Finally, we constructed a merged model (ChinaM-S1.0) that incorporates the more robust features of the five published models. As the existing models are constrained by different datasets and methods, the merged model serves as a new type of reference model that incorporates the common features from the joint datasets and methods for the shear-wave velocity structure of the Chinese mainland lithosphere.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451922000350/pdfft?md5=e10044dc505cf9c79cb1f3c042729b0a&pid=1-s2.0-S1674451922000350-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922000350","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The Chinese mainland is subject to complicated plate interactions that give rise to its complex structure and tectonics. While several seismic velocity models have been developed for the Chinese mainland, apparent discrepancies exist and, so far, little effort has been made to evaluate their reliability and consistency. Such evaluations are important not only for the application and interpretation of model results but also for future model improvement. To address this problem, here we compare five published shear-wave velocity models with a focus on model consistency. The five models were derived from different datasets and methods (i.e., body waves, surface waves from earthquakes, surface waves from noise interferometry, and full waves) and interpolated into uniform horizontal grids (0.5° × 0.5°) with vertical sampling points at 5 km, 10 km, and then 20 km intervals to a depth of 160 km below the surface, from which we constructed an averaged model (AM) as a common reference for comparative study. We compare both the absolute velocity values and perturbation patterns of these models. Our comparisons show that the models have large (> 4%) differences in absolute values, and these differences are independent of data coverage and model resolution. The perturbation patterns of the models also show large differences, although some of the models show a high degree of consistency within certain depth ranges. The observed inconsistencies may reflect limited model resolution but, more importantly, systematic differences in the datasets and methods employed. Thus, despite several seismic models being published for this region, there is significant room for improvement. In particular, the inconsistencies in both data and methodologies need to be resolved in future research. Finally, we constructed a merged model (ChinaM-S1.0) that incorporates the more robust features of the five published models. As the existing models are constrained by different datasets and methods, the merged model serves as a new type of reference model that incorporates the common features from the joint datasets and methods for the shear-wave velocity structure of the Chinese mainland lithosphere.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.