Impact of volume and expression time in an AAV-delivered channelrhodopsin.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Sanaz Ansarifar, Gabija Andreikė, Milad Nazari, Rodrigo Labouriau, Sadegh Nabavi, Andrea Moreno
{"title":"Impact of volume and expression time in an AAV-delivered channelrhodopsin.","authors":"Sanaz Ansarifar, Gabija Andreikė, Milad Nazari, Rodrigo Labouriau, Sadegh Nabavi, Andrea Moreno","doi":"10.1186/s13041-023-01067-1","DOIUrl":null,"url":null,"abstract":"<p><p>Optogenetics has revolutionised neuroscience research, but at the same time has brought a plethora of new variables to consider when designing an experiment with AAV-based targeted gene delivery. Some concerns have been raised regarding the impact of AAV injection volume and expression time in relation to longitudinal experimental designs. In this study, we investigated the efficiency of optically evoked post-synaptic responses in connection to two variables: the volume of the injected virus and the expression time of the virus. For this purpose, we expressed the blue-shifted ChR2, oChIEF, employing a widely used AAV vector delivery strategy. We found that the volume of the injected virus has a minimal impact on the efficiency of optically-evoked postsynaptic population responses. The expression time, on the other hand, has a pronounced effect, with a gradual reduction in the population responses beyond 4 weeks of expression. We strongly advise to monitor time-dependent expression profiles when planning or conducting long-term experiments that depend on successful and stable channelrhodopsin expression.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-023-01067-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Optogenetics has revolutionised neuroscience research, but at the same time has brought a plethora of new variables to consider when designing an experiment with AAV-based targeted gene delivery. Some concerns have been raised regarding the impact of AAV injection volume and expression time in relation to longitudinal experimental designs. In this study, we investigated the efficiency of optically evoked post-synaptic responses in connection to two variables: the volume of the injected virus and the expression time of the virus. For this purpose, we expressed the blue-shifted ChR2, oChIEF, employing a widely used AAV vector delivery strategy. We found that the volume of the injected virus has a minimal impact on the efficiency of optically-evoked postsynaptic population responses. The expression time, on the other hand, has a pronounced effect, with a gradual reduction in the population responses beyond 4 weeks of expression. We strongly advise to monitor time-dependent expression profiles when planning or conducting long-term experiments that depend on successful and stable channelrhodopsin expression.

AAV递送的通道视紫红质中体积和表达时间的影响。
光遗传学彻底改变了神经科学研究,但同时也带来了大量新的变量,在设计基于AAV的靶向基因递送实验时需要考虑。关于AAV注射量和表达时间对纵向实验设计的影响,已经提出了一些担忧。在这项研究中,我们研究了与两个变量有关的光学诱发突触后反应的效率:注射病毒的体积和病毒的表达时间。为此,我们使用广泛使用的AAV载体递送策略表达了蓝移ChR2,oChIEF。我们发现,注射病毒的体积对光学诱发的突触后群体反应的效率影响最小。另一方面,表达时间具有显著的影响,在表达4周后,群体反应逐渐减少。我们强烈建议在计划或进行依赖于成功和稳定的通道视紫红质表达的长期实验时,监测与时间相关的表达谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信