Miaomiao He , Hao Wang , Qiuyang Han , Xiuyuan Shi , Shuai He , Jiyu Sun , Zhuoli Zhu , Xueqi Gan , Yi Deng
{"title":"Glucose-primed PEEK orthopedic implants for antibacterial therapy and safeguarding diabetic osseointegration","authors":"Miaomiao He , Hao Wang , Qiuyang Han , Xiuyuan Shi , Shuai He , Jiyu Sun , Zhuoli Zhu , Xueqi Gan , Yi Deng","doi":"10.1016/j.biomaterials.2023.122355","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetic infectious microenvironment (DIME) frequently leads to a critical failure of osseointegration by virtue of its main peculiarities including typical hyperglycemia and pathogenic infection around implants. To address the plaguing issue, we devise a glucose-primed orthopedic implant composed of polyetheretherketone (PEEK), Cu-chelated metal-polyphenol network (hauberk coating) and glucose oxidase (GOx) for boosting diabetic osseointegration. Upon DIME, GOx on implants sostenuto consumes glucose to generate H<sub>2</sub>O<sub>2</sub>, and Cu liberated from hauberk coating catalyzes the H<sub>2</sub>O<sub>2</sub> to highly germicidal •OH, which massacres pathogenic bacteria through photo-augmented chemodynamic therapy. Intriguingly, the catalytic efficiency of the coating gets greatly improved with the turnover number (TON) of 0.284 s<sup>−1</sup>. Moreover, the engineered implants exhibit satisfactory cytocompatibility and facilitate osteogenicity due to the presence of Cu and osteopromotive polydopamine coating. RNA-seq analysis reveals that the implants enable to combat infections and suppress pro-inflammatory phenotype (M1). Besides, <em>in vivo</em> evaluations utilizing infected diabetic rat bone defect models at week 4 and 8 authenticate that the engineered implants considerably elevate osseointegration through pathogen elimination, inflammation dampening and osteogenesis promotion. Altogether, our present study puts forward a conceptually new tactic that arms orthopedic implants with glucose-primed antibacterial and osteogenic capacities for intractable diabetic osseointegration.</p></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"303 ","pages":"Article 122355"},"PeriodicalIF":12.8000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961223003630","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic infectious microenvironment (DIME) frequently leads to a critical failure of osseointegration by virtue of its main peculiarities including typical hyperglycemia and pathogenic infection around implants. To address the plaguing issue, we devise a glucose-primed orthopedic implant composed of polyetheretherketone (PEEK), Cu-chelated metal-polyphenol network (hauberk coating) and glucose oxidase (GOx) for boosting diabetic osseointegration. Upon DIME, GOx on implants sostenuto consumes glucose to generate H2O2, and Cu liberated from hauberk coating catalyzes the H2O2 to highly germicidal •OH, which massacres pathogenic bacteria through photo-augmented chemodynamic therapy. Intriguingly, the catalytic efficiency of the coating gets greatly improved with the turnover number (TON) of 0.284 s−1. Moreover, the engineered implants exhibit satisfactory cytocompatibility and facilitate osteogenicity due to the presence of Cu and osteopromotive polydopamine coating. RNA-seq analysis reveals that the implants enable to combat infections and suppress pro-inflammatory phenotype (M1). Besides, in vivo evaluations utilizing infected diabetic rat bone defect models at week 4 and 8 authenticate that the engineered implants considerably elevate osseointegration through pathogen elimination, inflammation dampening and osteogenesis promotion. Altogether, our present study puts forward a conceptually new tactic that arms orthopedic implants with glucose-primed antibacterial and osteogenic capacities for intractable diabetic osseointegration.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.