Treatment of radium-bearing brine using various zeolites: NaP1, NaX, clinoptilolite, 3A, 5A, 13X, ZSM-5, SAPO-11, SAPO-34

IF 4.5 3区 工程技术 Q1 WATER RESOURCES
K. Samolej , S. Chalupnik , M. Franus
{"title":"Treatment of radium-bearing brine using various zeolites: NaP1, NaX, clinoptilolite, 3A, 5A, 13X, ZSM-5, SAPO-11, SAPO-34","authors":"K. Samolej ,&nbsp;S. Chalupnik ,&nbsp;M. Franus","doi":"10.1016/j.wri.2023.100231","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the possibility of radium removal from brines using zeolites. Radium concentration in collected from hard coal mine water was as follows: <sup>226</sup>Ra 3.3 ± 0.2 Bq/L, <sup>228</sup>Ra 5.5 ± 0.5 Bq/L. Ten types of zeolites were selected for treatment: clinoptilolite, NaP1, NaX, 3A, 5A, 13X, Y, ZSM-5, SAPO-11, and SAPO-34. Sequential batch purification tests were performed. High efficiencies of radium removal from mine brine achieved with NaP1 and NaX, synthesized from fly ahes, are promising for the further application of obtained zeolitic materials, especially for water treatment. Furthermore, the use of zeolites derived from waste fly ash is an ecological and sustainable solution for environmental protection and remediation.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100231"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371723000318/pdfft?md5=1b941186c28dfe7d1394d6d74f5c7ca7&pid=1-s2.0-S2212371723000318-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371723000318","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the possibility of radium removal from brines using zeolites. Radium concentration in collected from hard coal mine water was as follows: 226Ra 3.3 ± 0.2 Bq/L, 228Ra 5.5 ± 0.5 Bq/L. Ten types of zeolites were selected for treatment: clinoptilolite, NaP1, NaX, 3A, 5A, 13X, Y, ZSM-5, SAPO-11, and SAPO-34. Sequential batch purification tests were performed. High efficiencies of radium removal from mine brine achieved with NaP1 and NaX, synthesized from fly ahes, are promising for the further application of obtained zeolitic materials, especially for water treatment. Furthermore, the use of zeolites derived from waste fly ash is an ecological and sustainable solution for environmental protection and remediation.

Abstract Image

使用各种沸石处理含镭盐水:NaP1、NaX、斜发沸石、3A、5A、13X、ZSM-5、SAPO-11、SAPO-34
本文研究了用沸石从卤水中去除镭的可能性。从硬煤矿井水中采集的镭浓度为:226Ra 3.3±0.2Bq/L,228Ra 5.5±0.5Bq/L。选择了10种类型的沸石进行处理:斜发沸石、NaP1、NaX、3A、5A、13X、Y、ZSM-5、SAPO-11和SAPO-34。进行了连续分批纯化试验。用粉煤灰合成的NaP1和NaX从盐水中高效去除镭,有望进一步应用所获得的沸石材料,特别是用于水处理。此外,使用从废粉煤灰中提取的沸石是一种生态和可持续的环境保护和修复解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources and Industry
Water Resources and Industry Social Sciences-Geography, Planning and Development
CiteScore
8.10
自引率
5.90%
发文量
23
审稿时长
75 days
期刊介绍: Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信