{"title":"Edge balanced star-hypergraph designs and vertex colorings of path designs","authors":"Paola Bonacini, Lucia Marino","doi":"10.1002/jcd.21837","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>v</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msubsup>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mo>,</mo>\n \n <mi>ℰ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${K}_{v}^{(3)}=(X,{\\rm{ {\\mathcal E} }})$</annotation>\n </semantics></math> be the complete hypergraph, uniform of rank 3, defined on a vertex set <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>x</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mtext>…</mtext>\n \n <mo>,</mo>\n \n <msub>\n <mi>x</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $X=\\{{x}_{1},\\ldots ,{x}_{v}\\}$</annotation>\n </semantics></math>, so that <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℰ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal E} }}$</annotation>\n </semantics></math> is the set of all triples of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. Let <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>H</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>D</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${H}^{(3)}=(V,{\\mathscr{D}})$</annotation>\n </semantics></math> be a subhypergraph of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>v</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n </mrow>\n <annotation> ${K}_{v}^{(3)}$</annotation>\n </semantics></math>, which means that <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mo>⊆</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $V\\subseteq X$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>⊆</mo>\n \n <mi>ℰ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{D}}\\subseteq {\\rm{ {\\mathcal E} }}$</annotation>\n </semantics></math>. We call <i>3-edges</i> the triples of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> contained in the family <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{D}}$</annotation>\n </semantics></math> and <i>edges</i> the pairs of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> contained in the 3-edges of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{D}}$</annotation>\n </semantics></math>, that we denote by <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $[x,y]$</annotation>\n </semantics></math>. A <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>H</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${H}^{(3)}$</annotation>\n </semantics></math>-design <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Σ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Sigma }}$</annotation>\n </semantics></math> is called <i>edge balanced</i> if for any <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n \n <mo>∈</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $x,y\\in X$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>≠</mo>\n \n <mi>y</mi>\n </mrow>\n </mrow>\n <annotation> $x\\ne y$</annotation>\n </semantics></math>, the number of blocks of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Σ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Sigma }}$</annotation>\n </semantics></math> containing the edge <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $[x,y]$</annotation>\n </semantics></math> is constant. In this paper, we consider the star hypergraph <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}(2,m+2)$</annotation>\n </semantics></math>, which is a hypergraph with <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> 3-edges such that all of them have an edge in common. We completely determine the spectrum of edge balanced <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}(2,m+2)$</annotation>\n </semantics></math>-designs for any <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $m\\ge 2$</annotation>\n </semantics></math>, that is, the set of the orders <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> for which such a design exists. Then we consider the case <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $m=2$</annotation>\n </semantics></math> and we denote the hypergraph <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}(2,4)$</annotation>\n </semantics></math> by <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>P</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${P}^{(3)}(2,4)$</annotation>\n </semantics></math>. Starting from any edge-balanced <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mfenced>\n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mfrac>\n <mrow>\n <mi>v</mi>\n \n <mo>+</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}\\left(2,\\frac{v+4}{3}\\right)$</annotation>\n </semantics></math>, with <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n \n <mo>≡</mo>\n \n <mn>2</mn>\n <mspace></mspace>\n \n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $v\\equiv 2\\,\\mathrm{mod}\\,3$</annotation>\n </semantics></math> sufficiently big, for any <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> $p\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfenced>\n <mfrac>\n <mi>v</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n \n <mo>≤</mo>\n \n <mi>p</mi>\n \n <mo>≤</mo>\n \n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $\\unicode{x02308}\\frac{v}{2}\\unicode{x02309}\\le p\\le v$</annotation>\n </semantics></math>, we construct a <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>P</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${P}^{(3)}(2,4)$</annotation>\n </semantics></math>-design of order <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $2v$</annotation>\n </semantics></math> with feasible set <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{2,3\\}\\cup [p,v]$</annotation>\n </semantics></math>, in the context of proper vertex colorings such that no block is either monochromatic or polychromatic.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 7","pages":"497-514"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21837","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21837","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let be the complete hypergraph, uniform of rank 3, defined on a vertex set , so that is the set of all triples of . Let be a subhypergraph of , which means that and . We call 3-edges the triples of contained in the family and edges the pairs of contained in the 3-edges of , that we denote by . A -design is called edge balanced if for any , , the number of blocks of containing the edge is constant. In this paper, we consider the star hypergraph , which is a hypergraph with 3-edges such that all of them have an edge in common. We completely determine the spectrum of edge balanced -designs for any , that is, the set of the orders for which such a design exists. Then we consider the case and we denote the hypergraph by . Starting from any edge-balanced , with sufficiently big, for any , , we construct a -design of order with feasible set , in the context of proper vertex colorings such that no block is either monochromatic or polychromatic.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.