Edge balanced star-hypergraph designs and vertex colorings of path designs

IF 0.5 4区 数学 Q3 MATHEMATICS
Paola Bonacini, Lucia Marino
{"title":"Edge balanced star-hypergraph designs and vertex colorings of path designs","authors":"Paola Bonacini,&nbsp;Lucia Marino","doi":"10.1002/jcd.21837","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>v</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msubsup>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mo>,</mo>\n \n <mi>ℰ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${K}_{v}^{(3)}=(X,{\\rm{ {\\mathcal E} }})$</annotation>\n </semantics></math> be the complete hypergraph, uniform of rank 3, defined on a vertex set <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>x</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mtext>…</mtext>\n \n <mo>,</mo>\n \n <msub>\n <mi>x</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $X=\\{{x}_{1},\\ldots ,{x}_{v}\\}$</annotation>\n </semantics></math>, so that <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℰ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal E} }}$</annotation>\n </semantics></math> is the set of all triples of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. Let <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>H</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>D</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${H}^{(3)}=(V,{\\mathscr{D}})$</annotation>\n </semantics></math> be a subhypergraph of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>v</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n </mrow>\n <annotation> ${K}_{v}^{(3)}$</annotation>\n </semantics></math>, which means that <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mo>⊆</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $V\\subseteq X$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>⊆</mo>\n \n <mi>ℰ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{D}}\\subseteq {\\rm{ {\\mathcal E} }}$</annotation>\n </semantics></math>. We call <i>3-edges</i> the triples of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> contained in the family <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{D}}$</annotation>\n </semantics></math> and <i>edges</i> the pairs of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> contained in the 3-edges of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{D}}$</annotation>\n </semantics></math>, that we denote by <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $[x,y]$</annotation>\n </semantics></math>. A <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>H</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${H}^{(3)}$</annotation>\n </semantics></math>-design <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Σ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Sigma }}$</annotation>\n </semantics></math> is called <i>edge balanced</i> if for any <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n \n <mo>∈</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $x,y\\in X$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>≠</mo>\n \n <mi>y</mi>\n </mrow>\n </mrow>\n <annotation> $x\\ne y$</annotation>\n </semantics></math>, the number of blocks of <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Σ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Sigma }}$</annotation>\n </semantics></math> containing the edge <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $[x,y]$</annotation>\n </semantics></math> is constant. In this paper, we consider the star hypergraph <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}(2,m+2)$</annotation>\n </semantics></math>, which is a hypergraph with <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> 3-edges such that all of them have an edge in common. We completely determine the spectrum of edge balanced <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}(2,m+2)$</annotation>\n </semantics></math>-designs for any <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $m\\ge 2$</annotation>\n </semantics></math>, that is, the set of the orders <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> for which such a design exists. Then we consider the case <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $m=2$</annotation>\n </semantics></math> and we denote the hypergraph <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}(2,4)$</annotation>\n </semantics></math> by <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>P</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${P}^{(3)}(2,4)$</annotation>\n </semantics></math>. Starting from any edge-balanced <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>S</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mfenced>\n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mfrac>\n <mrow>\n <mi>v</mi>\n \n <mo>+</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n <annotation> ${S}^{(3)}\\left(2,\\frac{v+4}{3}\\right)$</annotation>\n </semantics></math>, with <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n \n <mo>≡</mo>\n \n <mn>2</mn>\n <mspace></mspace>\n \n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $v\\equiv 2\\,\\mathrm{mod}\\,3$</annotation>\n </semantics></math> sufficiently big, for any <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> $p\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfenced>\n <mfrac>\n <mi>v</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n \n <mo>≤</mo>\n \n <mi>p</mi>\n \n <mo>≤</mo>\n \n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $\\unicode{x02308}\\frac{v}{2}\\unicode{x02309}\\le p\\le v$</annotation>\n </semantics></math>, we construct a <math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>P</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>3</mn>\n \n <mo>)</mo>\n </mrow>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${P}^{(3)}(2,4)$</annotation>\n </semantics></math>-design of order <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $2v$</annotation>\n </semantics></math> with feasible set <math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{2,3\\}\\cup [p,v]$</annotation>\n </semantics></math>, in the context of proper vertex colorings such that no block is either monochromatic or polychromatic.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 7","pages":"497-514"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21837","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21837","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let K v ( 3 ) = ( X , ) ${K}_{v}^{(3)}=(X,{\rm{ {\mathcal E} }})$ be the complete hypergraph, uniform of rank 3, defined on a vertex set X = { x 1 , , x v } $X=\{{x}_{1},\ldots ,{x}_{v}\}$ , so that ${\rm{ {\mathcal E} }}$ is the set of all triples of X $X$ . Let H ( 3 ) = ( V , D ) ${H}^{(3)}=(V,{\mathscr{D}})$ be a subhypergraph of K v ( 3 ) ${K}_{v}^{(3)}$ , which means that V X $V\subseteq X$ and D ${\mathscr{D}}\subseteq {\rm{ {\mathcal E} }}$ . We call 3-edges the triples of V $V$ contained in the family D ${\mathscr{D}}$ and edges the pairs of V $V$ contained in the 3-edges of D ${\mathscr{D}}$ , that we denote by [ x , y ] $[x,y]$ . A H ( 3 ) ${H}^{(3)}$ -design Σ ${\rm{\Sigma }}$ is called edge balanced if for any x , y X $x,y\in X$ , x y $x\ne y$ , the number of blocks of Σ ${\rm{\Sigma }}$ containing the edge [ x , y ] $[x,y]$ is constant. In this paper, we consider the star hypergraph S ( 3 ) ( 2 , m + 2 ) ${S}^{(3)}(2,m+2)$ , which is a hypergraph with m $m$ 3-edges such that all of them have an edge in common. We completely determine the spectrum of edge balanced S ( 3 ) ( 2 , m + 2 ) ${S}^{(3)}(2,m+2)$ -designs for any m 2 $m\ge 2$ , that is, the set of the orders v $v$ for which such a design exists. Then we consider the case m = 2 $m=2$ and we denote the hypergraph S ( 3 ) ( 2 , 4 ) ${S}^{(3)}(2,4)$ by P ( 3 ) ( 2 , 4 ) ${P}^{(3)}(2,4)$ . Starting from any edge-balanced S ( 3 ) 2 , v + 4 3 ${S}^{(3)}\left(2,\frac{v+4}{3}\right)$ , with v 2 mod 3 $v\equiv 2\,\mathrm{mod}\,3$ sufficiently big, for any p N $p\in {\mathbb{N}}$ , v 2 p v $\unicode{x02308}\frac{v}{2}\unicode{x02309}\le p\le v$ , we construct a P ( 3 ) ( 2 , 4 ) ${P}^{(3)}(2,4)$ -design of order 2 v $2v$ with feasible set { 2 , 3 } [ p , v ] $\{2,3\}\cup [p,v]$ , in the context of proper vertex colorings such that no block is either monochromatic or polychromatic.

边平衡星形超图设计与路径设计的顶点着色
我们完全确定了边缘平衡S(3)的谱(2,m+2)${S}^{(3)}(2,m+2)$-任意m≥2的设计$m\ge2$,即存在这样的设计的订单v$v$的集合。然后我们考虑m=2$m=2$的情况,我们表示超图S(3)(2,4)${S}^{(3)}(2,4)$由P(3)(2,4)${P}^{(3)}(2,4)$。 从任意边平衡的S(3)开始2.v+4 3${S}^{(3)}\left(2,\frac{v+4}{3}\right)$,具有v lect 2 mod 3$v\equiv 2\,\mathrm{mod}\,3$足够大,对于{\mathbb{N}}$中的任何p∈N$p\,v2≤p≤v$\unicode{x02308}\frac{v}{2}\unicode{x02309}\le p\le v$,我们构造了一个P(3)(2,4)${P}^{(3)}(2,4)$-具有可行集的阶2v$2v$的设计{2,3}Ş[p,v]$\{2,3\}\cup[p,v]$,在适当的顶点着色的上下文中,使得没有块是单色或多色的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信