High-throughput digital quantification of Alzheimer disease pathology and associated infrastructure in large autopsy studies.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alifiya Kapasi, Jennifer Poirier, Ahmad Hedayat, Ashley Scherlek, Srabani Mondal, Tiffany Wu, John Gibbons, Lisa L Barnes, David A Bennett, Sue E Leurgans, Julie A Schneider
{"title":"High-throughput digital quantification of Alzheimer disease pathology and associated infrastructure in large autopsy studies.","authors":"Alifiya Kapasi, Jennifer Poirier, Ahmad Hedayat, Ashley Scherlek, Srabani Mondal, Tiffany Wu, John Gibbons, Lisa L Barnes, David A Bennett, Sue E Leurgans, Julie A Schneider","doi":"10.1093/jnen/nlad086","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput digital pathology offers considerable advantages over traditional semiquantitative and manual methods of counting pathology. We used brain tissue from 5 clinical-pathologic cohort studies of aging; the Religious Orders Study, the Rush Memory and Aging Project, the Minority Aging Research Study, the African American Clinical Core, and the Latino Core to (1) develop a workflow management system for digital pathology processes, (2) optimize digital algorithms to quantify Alzheimer disease (AD) pathology, and (3) harmonize data statistically. Data from digital algorithms for the quantification of β-amyloid (Aβ, n = 413) whole slide images and tau-tangles (n = 639) were highly correlated with manual pathology data (r = 0.83 to 0.94). Measures were robust and reproducible across different magnifications and repeated scans. Digital measures for Aβ and tau-tangles across multiple brain regions reproduced established patterns of correlations, even when samples were stratified by clinical diagnosis. Finally, we harmonized newly generated digital measures with historical measures across multiple large autopsy-based studies. We describe a multidisciplinary approach to develop a digital pathology pipeline that reproducibly identifies AD neuropathologies, Aβ load, and tau-tangles. Digital pathology is a powerful tool that can overcome critical challenges associated with traditional microscopy methods.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlad086","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput digital pathology offers considerable advantages over traditional semiquantitative and manual methods of counting pathology. We used brain tissue from 5 clinical-pathologic cohort studies of aging; the Religious Orders Study, the Rush Memory and Aging Project, the Minority Aging Research Study, the African American Clinical Core, and the Latino Core to (1) develop a workflow management system for digital pathology processes, (2) optimize digital algorithms to quantify Alzheimer disease (AD) pathology, and (3) harmonize data statistically. Data from digital algorithms for the quantification of β-amyloid (Aβ, n = 413) whole slide images and tau-tangles (n = 639) were highly correlated with manual pathology data (r = 0.83 to 0.94). Measures were robust and reproducible across different magnifications and repeated scans. Digital measures for Aβ and tau-tangles across multiple brain regions reproduced established patterns of correlations, even when samples were stratified by clinical diagnosis. Finally, we harmonized newly generated digital measures with historical measures across multiple large autopsy-based studies. We describe a multidisciplinary approach to develop a digital pathology pipeline that reproducibly identifies AD neuropathologies, Aβ load, and tau-tangles. Digital pathology is a powerful tool that can overcome critical challenges associated with traditional microscopy methods.

大型尸检研究中阿尔茨海默病病理学和相关基础设施的高通量数字量化。
与传统的半定量和手动病理计数方法相比,高通量数字病理提供了相当大的优势。我们使用了来自5项衰老临床病理队列研究的脑组织;宗教秩序研究、快速记忆和老龄化项目、少数民族老龄化研究、非裔美国人临床核心和拉丁裔核心,以(1)开发数字病理过程的工作流程管理系统,(2)优化数字算法以量化阿尔茨海默病(AD)病理,以及(3)在统计上协调数据。β-淀粉样蛋白(Aβ,n = 413)整张幻灯片图像和τ缠结(n = 639)与手工病理学数据高度相关(r = 0.83至0.94)。在不同的放大倍数和重复扫描中,测量是稳健的和可重复的。跨多个大脑区域的Aβ和tau缠结的数字测量再现了既定的相关性模式,即使样本是根据临床诊断分层的。最后,我们在多个基于尸检的大型研究中,将新生成的数字测量与历史测量进行了协调。我们描述了一种多学科方法来开发数字病理管道,该管道可重复识别AD神经病理学、aβ负荷和tau缠结。数字病理学是一种强大的工具,可以克服与传统显微镜方法相关的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信