Gabriela Davidovich-Young, Eric Wong-González, Ruth De la Asunción-Romero, Marta Bustamante-Mora
{"title":"Effect of peeling, cutting, or shredding of lettuce, carrot, or potato on the efficacy of chlorine disinfection.","authors":"Gabriela Davidovich-Young, Eric Wong-González, Ruth De la Asunción-Romero, Marta Bustamante-Mora","doi":"10.1177/10820132231213671","DOIUrl":null,"url":null,"abstract":"<p><p>Minimally processed vegetables are washed and subsequently disinfected by immersion in water solutions with antimicrobials which reduce the initial pathogenic or spoilage microbial load. Chlorine remains one of the most widely used disinfectants for vegetables and hence the importance of studying its properties. The aim of this study was to evaluate the effect of peeling, cutting, and shredding on the effectiveness of chlorine (200 ppm) as a disinfectant in lettuce, carrot, and potato. Three independent repetitions of each experiment were completed, and data was statistically analyzed. Results showed that the maintenance of the chlorine concentration in the disinfectant solution, over time, depended on the vegetables' preliminary processing technique (whole, peeled, cut, or shredded) (<i>p</i> < 0.05). In general, the disinfection treatments studied reduced <i>Escherichia coli</i> by 1-8 logs. The addition of chlorine in the disinfectant solution allowed greater reduction in <i>E. coli</i> than using water immersions (<i>p</i> < 0.05) and disinfection times longer than 5 min did not improve these microbiological reductions (<i>p</i>>0.05). The vegetables' subdivision (whole, peeled, cut, or shredded) can affect both <i>E coli's</i> reduction and the vegetables' residual chlorine concentration. No trend was observed in terms of sensory differences and their relationship to the vegetables' processing and disinfection. These results suggest that each facility must validate its disinfection processes, according to the conditions established on site and reduction goals related to initial microbial counts, vegetables' quality, processing operations, and other important aspects.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"415-424"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231213671","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Minimally processed vegetables are washed and subsequently disinfected by immersion in water solutions with antimicrobials which reduce the initial pathogenic or spoilage microbial load. Chlorine remains one of the most widely used disinfectants for vegetables and hence the importance of studying its properties. The aim of this study was to evaluate the effect of peeling, cutting, and shredding on the effectiveness of chlorine (200 ppm) as a disinfectant in lettuce, carrot, and potato. Three independent repetitions of each experiment were completed, and data was statistically analyzed. Results showed that the maintenance of the chlorine concentration in the disinfectant solution, over time, depended on the vegetables' preliminary processing technique (whole, peeled, cut, or shredded) (p < 0.05). In general, the disinfection treatments studied reduced Escherichia coli by 1-8 logs. The addition of chlorine in the disinfectant solution allowed greater reduction in E. coli than using water immersions (p < 0.05) and disinfection times longer than 5 min did not improve these microbiological reductions (p>0.05). The vegetables' subdivision (whole, peeled, cut, or shredded) can affect both E coli's reduction and the vegetables' residual chlorine concentration. No trend was observed in terms of sensory differences and their relationship to the vegetables' processing and disinfection. These results suggest that each facility must validate its disinfection processes, according to the conditions established on site and reduction goals related to initial microbial counts, vegetables' quality, processing operations, and other important aspects.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).